DOI QR코드

DOI QR Code

Temporal Adjustment of Channel Geometry and Spatial Changes in Riverbed Materials along the Downstream Channels of Large Dams in the Geum River basin

금강유역 대형댐 하류 하도지형 경년변화 및 하상재료 종적변이 연구

  • Ock, Giyoung (Department of Ecosystem Assessment, National Institute of Ecology,) ;
  • Choi, Mikyoung (International Water Resources Research Institute, Chungnam National University) ;
  • Park, Hyung-Geun (Department of Ecosystem Assessment, National Institute of Ecology,)
  • 옥기영 (국립생태원 생태평가연구실) ;
  • 최미경 (충남대학교 국제수자원연구소) ;
  • 박형근 (국립생태원 생태평가연구실)
  • Received : 2019.12.13
  • Accepted : 2019.12.19
  • Published : 2019.12.31

Abstract

This study investigated longitudinal changes in riverbed materials properties and temporal alteration of river channel geomorphology in the Geum River basin, where two multipurpose dams(Yongdam Dam and Daecheong Dam) were built in upstream area. We carried out grain size distribution analyses and measured soil organic matter contents of riverbed materials taken at the upper and lower sites of the two large dams. We also estimated the channel width, bar area and vegetation encroachment using the oldest map and aerial photographs taken before and after the construction of the dams. The results can contribute to increasing understandings of dam induced habitat alteration in river ecosystem.

대형댐 하류의 수용생태계에서는 상류로부터 공급되는 유기물과 토사 이동의 양적 단절과 질적 변환에 따라 서식처의 물리화학적 교란이 발생하게 된다. 본 연구는 금강 중상류역을 대상으로 대형댐에 의한 하상재료와 토양의 종적변화, 그리고 대형댐 건설 이후 하류 하천의 하도지형 변화를 정량적으로 파악하였다. 댐 상·하류 하상재료 입도분석 결과, 용담댐 구간은 상·하류 모두 호박돌, 굵은자갈로 조립화되어 있었으며, 대청댐 구간은 댐하류에서 중간입경이 가는자갈로 급격히 감소하고 모래비율이 급격히 증가하였다. 토양유기물은 두 개의 댐 모두 하류에서 뚜렷하게 증가하였다. 고지도와 항공사진을 이용하여 대청댐 하류의 하도지형을 분석한 결과, 사주면적의 감소와 사주 내 식생비율의 급격한 증가, 사행도와 저수로폭의 감소 경향을 정량적으로 파악할 수 있었다. 이러한 결과들은 댐 건설에 따른 서식처 변화의 인과관계를 파악하여 댐 하류 조절하천의 자연성을 회복하기 위한 복원관리 방안을 도출하는데 적용될 수 있을 것이다.

Keywords

References

  1. Choi, M., Kim, J., Ock, G. and Jung, K., 2019. A study on historical changes of landforms and habitat structures in the mid-stream of the Mangyeong River by weirs. Journal of Korea Water Resources Association, 52(S-2): 791-799. (in Korean)
  2. Choi, S., Yoon, B., Woo, H. and Cho, K. 2004. Effect of Flow-Regime Change due to Damming on the River Morphology and Vegetation Cover in the Downstream River Reach: A case of Hapchon Dam on the Hwang River. Journal of Korea water resources association, 37: 55-66. (in Korean) https://doi.org/10.3741/JKWRA.2004.37.1.055
  3. Graf, W.J. 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79: 336-360. https://doi.org/10.1016/j.geomorph.2006.06.022
  4. Heiri O., Lotter, A.F. and Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101-110. https://doi.org/10.1023/A:1008119611481
  5. Jang, C.L. 2017. Numerical simulation of flow characteristics and channel changes with discharge in the sharped meandering channel in the Naeseongcheon, Korea. Ecology and Resilient Infrastructure, 4: 24-33. (in Korean) https://doi.org/10.17820/eri.2017.4.1.024
  6. Kondolf, G.M. 1997. Hungry water: effects of dams and gravel mining on river channels. Environmental Management 21: 533-552. https://doi.org/10.1007/s002679900048
  7. Lamberti, G.A., Chaloner, D.T. and Hershey, A.E. 2010. Linkages among aquatic ecosystems. Journal of the North American Benthological Society. 29: 245-263. https://doi.org/10.1899/08-166.1
  8. Lee, C., Kim, D. G., Hwang, S. Y., Kim, Y., Jeong, S., Kim, S., and Cho, H. 2019. Dataset of long-term investigation on change in hydrology, channel Morphology, landscape and vegetation along the Naeseong Stream (II). Ecology and Resilient Infrastructure, 6: 34-48. (in Korean)
  9. Lee, S., Ock, G. and Choi, J. 2008. A Study on the Expansion Process of Vegetation on Sand-bars in Fluvial Meandering Stream. Korean Journal of Environmental Ecology. 22: 658-665. (in Korean)
  10. Lee, S. and Ock, G. 2012. Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River, Journal of Korea Water Resources Associations 45: 445-454. (in Korean) https://doi.org/10.3741/JKWRA.2012.45.5.445
  11. Ock, G. and Takemon, Y. 2014. Effect of reservoir-derived plankton released from dams on particulate organic matter composition in a tailwater river (Uji River, Japan): source partitioning using stable isotopes of carbon and nitrogen. Ecohydrology 7: 1172-1186.
  12. Ock, G., Jang, C.L., Kim, B. and Choi, M. 2019. A review on sediment replenishment to river channel for natural recovery of regulated rivers below large dams. Journal of Korea Water Resources Associations 52(S-2): 835-844. (in Korean)
  13. Park, H.G. and Ock, G. 2017. Estimation of the total terrestrial organic carbon flux of large rivers in korea using the national water quality monitoring system. Korean Journal of Environmental Biology, 35: 549-556. (in Korean) https://doi.org/10.11626/KJEB.2017.35.4.549
  14. Power, M.E., Dietrich, W.E. and Finlay, J.C. 1996. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental management, 20: 887-895. https://doi.org/10.1007/BF01205969
  15. Schlunz, B. and Schneider, R.R. 2000. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates. International Journal of Earth Sciences. 88: 599-606. https://doi.org/10.1007/s005310050290
  16. Wang, Y., Rhoads B.L., Wang, D., Wu, J. and Zhang, X. 2018. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. Journal of Hydrology. 558: 184-195. https://doi.org/10.1016/j.jhydrol.2018.01.027
  17. Wu, Y., Bao, H., Yu, H., Zhang, J. and Kattner, G.. 2015. Temporal variability of particulate organic carbon in the lower Changjiang(Yangtze River) in the post Three Gorges Dam period: Links to anthropogenic and climate impacts. Journal of Geophysical Research: Biogeosciences. 120: 2194-2211. https://doi.org/10.1002/2015JG002927