DOI QR코드

DOI QR Code

Estimating Visitors on Water-friendly Space in the River Using Mobile Big Data and UAV

통신 빅데이터와 무인기 영상을 활용한 하천 친수지구 이용객 추정

  • Kim, Seo Jun (Department of Civil and Environmental Engineering, Myongji university) ;
  • Kim, Chang Sung (River Survey Division, Korea Institute of Hydrological Survey) ;
  • Kim, Ji Sung (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 김서준 (명지대학교 토목환경공학과) ;
  • 김창성 (한국수자원조사기술원 하천조사실) ;
  • 김지성 (한국건설기술연구원 국토보전연구본부)
  • Received : 2019.11.25
  • Accepted : 2019.11.29
  • Published : 2019.12.31

Abstract

Recently, 357 water-friendly space were established near the main streams of the country through the Four Major Rivers Project, which was used as a resting and leisure space for the citizens, and the river environment and ecological health were improved. We are working hard to reduce the number of points and plan and manage the water-friendly space. In particular, attempts are being made to utilize mobile big data to make more scientific and systematic research on the number of users. However, when using mobile big data compared to the existing method of conducting field surveys, it is possible to easily identify spatial user movement patterns, but it is different from the actual amount of use, so various verifications are required to solve this problem. Therefore, this study evaluated the accuracy of estimating the number of users using mobile big data by comparing the number of visitors using mobile big data and the number of visitors using drone for Samrak ecological park located in the mouth of Nakdong River. As a result, in the river hydrophilic district, it was difficult to accurately estimating the usage pattern of each facility due to the low precision of pCELL, and it was confirmed that the usage patterns in the park could be distorted due to the signals stopped at roads and parking lots. Therefore, it is necessary to improve the number of pCELLs in the water-friendly space and to estimate the number of visitors excluding facilities such as roads and parking lots in future mobile big data processing.

최근 4대강사업을 통해 국가 주요하천 인근에 약 357개소의 친수공원을 조성하여 국민의 휴식 및 레저공간으로 활용하고, 하천 환경 및 생태적 건강성을 높이고자 하였으나 실제 활용도가 저조하여 친수지구의 수를 297개소로 축소하고, 친수지구 계획 및 관리를 위한 노력을 많이 하고 있다. 특히 이용객 수 조사 및 예측을 좀 더 과학적이고 체계적으로 하기 위해 통신 빅데이터를 활용하는 시도가 이루어지고 있다. 하지만 기존 사람이 현장 조사를 하는 방식과 비교하여 통신 빅데이터를 활용할 경우 공간적인 이용객 이동 패턴을 간편하게 파악할 수 있지만 실제 이용객 수와는 차이가 있기 때문에 이를 해결하기 위한 다양한 검증이 필요하다. 이에 본 연구에서는 낙동강 하구에 위치한 삼락생태공원을 대상으로 통신 빅데이터를 활용한 이용객 이동 패턴과 무인기를 활용한 이용객 수를 비교하여 통신 빅데이터를 활용한 이용객 수 추정의 정확도를 평가하였다. 그 결과 하천 친수지구의 경우 pCELL의 정밀도가 낮아 시설물별 이용 패턴을 정밀하게 추정하기 어려웠으며, 도로 및 주차장 등에 멈춰 있는 신호들 때문에 공원 내 이용 패턴이 왜곡될 수 있음을 확인하였다. 따라서 향후 통신 빅데이터 처리에 있어서 친수지구 내 pCELL 수를 확충하고 도로 및 주차장 등의 시설물을 제외한 이용객 수 추정할 수 있도록 개선이 필요한 것으로 나타났다.

Keywords

References

  1. Back, J.W., Park J.M. and Kim J.G. 2013. A study on the park using pattern focusing on user behavior in river-eco-park. Journal of the Korean Society of Civil Engineers. 22:2157-2168. (in Korean) https://doi.org/10.12652/Ksce.2013.33.5.2157
  2. De Jonge, E., van Pelt, M. and Roos, M. 2012. Time patterns, geospatial clustering and mobility statistics based on mobile phone network data. In Proceedings of the Federal Committee on Statistical Methodology Research Conference, January 10-12. Washington D.C.: Washington Convention Center.
  3. Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., Blondela, V. D. and Tatem, A. J. 2014. Dynamic population mapping using mobile phone data, Proceedings of the National Academy of Sciences, 111. 45: 15888-15893. https://doi.org/10.1073/pnas.1408439111
  4. Douglass, R.W., Meyer, D.A., Ram, M., Rideout, D. and Song, D. 2015. High resolution population estimates from telecommunications data, EPJ Data Science, 4. 1: 1-13. https://doi.org/10.1140/epjds/s13688-015-0038-0
  5. Kim J.H., Ko Y.S., Kim J.K. and Kim D.H. 2014. The Application of Smart Cell in Space Policy. Sejong: Korea Research Institute for Human Settlements. (in Korean)
  6. Kim K.Y. and Lee G.H. 2016. A study on improvement of estimating de facto population using mobile telecommunications big data. Journal of the Korean Urban Geographical Society 19. 2:181-196. (in Korean) https://doi.org/10.21189/JKUGS.19.2.13
  7. Lee J.S. and Lee S.E. 2019. A Study on Classification and Characterization of Water-Friendly Space for the Smart River Space Management Using the Mobile Big Data. Korea Research Institute for Human Settlements 9:69-82. (in Korean)
  8. Lee J.S., Lee S.E. and Choi J.Y. 2019. Using the Mobile Big Data for the Smart River Space Management : Data Validation and Water-Friendly Space Indicators. Korea Research Institute for Human Settlements 6:3-18. (in Korean)
  9. Lim J.H., Seo C.W., Hwang S.G. and Yun H.C. 2017. A study on the obtaining method of high accuracy ortho images by using non-surveying drone and cadastral boundary points. Journal of the Korean Society of Cadastre. 08:71-83. (in Korean)
  10. Ministry of Land, Transport and Maritime Affairs. 2012. The Four River Restoration Project: (1) Summary. Sejong: Ministry of Land, Transport and Maritime Affairs.
  11. Ministry of Land, Transport and Maritime Affairs. 2016. Study on River Maintenance Evaluation and Improvement Plan. Sejong: MOLIT.
  12. Oh J.G., Heo H.Y., Sim G.W., Kim T.G. and Choi J.Y. 2017. A Study on National Park Visitor Survey and Pattern Analysis Using Mobile Big Data. Wonju: Korea National Park Service. (in Korean)