그림 1
그림 2 V103 오일러 자세각 추정 결과 Fig. 2 Ground Truth and estimated result of Euler angles of V103
그림 3 제안된 알고리즘과 약결합 기반 알고리즘의 V103 자세 오차 비교 Fig. 3 Attitude error of proposed and LC algorithm of V103
그림 4 제안된 알고리즘과 약결합 기반 알고리즘의 V103 위치 오차 비교 Fig. 4 Position error of proposed and LC algorithm of V103
그림 5 항법 모듈 및 실험 장비 Fig. 5 Navigation module and experimental setup
그림 6 야외 실험 환경 Fig. 6 Outdoor experimental environments
그림 7 수평 및 수직 위치 추정 결과 Fig. 7 Estimation results of horizontal and vertical position
그림 8 위치 추정 오차 비교 Fig. 8 Estimation error of position
그림 9 자세 추정 오차 비교 Fig. 9 Estimation error of attitude
표 1 EuRoC dataset의 위치, 자세 오차 결과 Table 1 Position and Attitude Error of EuRoC Dataset
표 2 알고리즘 별 ATE 결과(median) Table 2 Absolute Translational RMSE (median)
표 3 ADIS 16448 제원 Table 3 Specification of ADIS 16448
References
- S. Shen, N. Michael, and V. Kumar, "Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs", Proc. - IEEE Int. Conf. Robot. Autom., Vol. 2015-June, No. June, pp. 5303-5310, 2015.
- S. Weiss and R. Siegwart, "Real-time metric state estimation for modular vision-inertial systems", Proc. - IEEE Int. Conf. Robot. Autom., pp. 4531-4537, 2011.
- G. Huang, M. Kaess, and J. J. Leonard, "Towards consistent visual-inertial navigation", in Proceedings - IEEE International Conference on Robotics and Automation, 2014, pp. 4926-4933.
- S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, "Keyframe-based visual-inertial odometry using nonlinear optimization", Int. J. Rob. Res., Vol. 34, No. 3, pp. 314-334, Mar. 2015. https://doi.org/10.1177/0278364914554813
- R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras", IEEE Trans. Robot., Vol. 33, No. 5, pp. 1255-1262, Oct. 2017. https://doi.org/10.1109/TRO.2017.2705103
- T. Qin, P. Li, and S. Shen, "VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator", IEEE Trans. Robot., Vol. 34, No. 4, pp. 1004-1020, 2017. https://doi.org/10.1109/tro.2018.2853729
- T. Schneider et al., "maplab: An Open Framework for Research in Visual-inertial Mapping and Localization", Vol. 3, No. 3, pp. 1418-1425, 2017. https://doi.org/10.1109/lra.2018.2800113
- C. Mei, G. Sibley, and P. Newman, "Closing loops without places", in IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 2010, p. 3738-3744p.
- R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, "G2o: A general framework for graph optimization", Proc. - IEEE Int. Conf. Robot. Autom., pp. 3607-3613, 2011.
- K. Schmid and H. Hirschmuller, "Stereo vision and IMU based real-time ego-motion and depth image computation on a handheld device", in Proceedings - IEEE International Conference on Robotics and Automation, 2013, pp. 4671-4678.
- B. Lee, S. Yun, H. K. Lee, Y. J. Lee, and S. Sung, "An efficient attitude reference system design using velocity differential vectors under weak acceleration dynamics", Int. J. Aeronaut. Sp. Sci., Vol. 17, No. 2, pp. 222-231, 2016. https://doi.org/10.5139/IJASS.2016.17.2.222
- B. Lee, Y. J. Lee, and S. Sung, "Attitude Determination Algorithm based on Relative Quaternion Geometry of Velocity Incremental Vectors for Cost Efficient AHRS Design", Int. J. Aeronaut. Sp. Sci., Vol. 19, No. 2, pp. 459- 469, Jun. 2018. https://doi.org/10.1007/s42405-018-0030-6
- M. Burri et al., "The EuRoC micro aerial vehicle datasets", Int. J. Rob. Res., Vol. 35, No. 10, pp. 1157-1163, 2016. https://doi.org/10.1177/0278364915620033
- T. Bailey and H. Durrant-Whyte, "Simultaneous localization and mapping (SLAM): Part I", 2006.
- A. I. Mourikis and S. I. Roumeliotis, "A multi-state constraint Kalman filter for vision-aided inertial navigation", in Proceedings - IEEE International Conference on Robotics and Automation, 2007, pp. 3565-3572.
- J. Kelly and G. S. Sukhatme, "Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor Self-calibration", Int. J. Rob. Res., Vol. 30, No. 1, pp. 56-79, 2011. https://doi.org/10.1177/0278364910382802
- M. Li and A. I. Mourikis, "Improving the accuracy of EKF-based visual-inertial odometry", in Proceedings - IEEE International Conference on Robotics and Automation, 2012, pp. 828-835.
- M. Li and A. I. Mourikis, "High-precision, consistent EKF-based visual-inertial odometry", Int. J. Rob. Res., Vol. 32, No. 6, pp. 690-711, May 2013. https://doi.org/10.1177/0278364913481251
- P. Tanskanen, T. Naegeli, M. Pollefeys, and O. Hilliges, "Semi-direct EKF-based monocular visual-inertial odometry", in IEEE International Conference on Intelligent Robots and Systems, 2015, Vol. 2015-Decem, pp. 6073-6078.
- M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, "Robust visual inertial odometry using a direct EKFbased approach", in IEEE International Conference on Intelligent Robots and Systems, 2015, Vol. 2015-Decem, pp. 298-304.
- M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, "Iterated extended Kalman filter based visualinertial odometry using direct photometric feedback", Int. J. Rob. Res., Vol. 36, No. 10, pp. 1053-1072, 2017. https://doi.org/10.1177/0278364917728574
- K. Sun et al., "Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight", Vol. 3, No. 2, pp. 965-972, 2017. https://doi.org/10.1109/lra.2018.2793349
- S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, "A robust and modular multi-sensor fusion approach applied to MAV navigation", in IEEE International Conference on Intelligent Robots and Systems, 2013, pp. 3923-3929.
- S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, "Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft MAV", in Proceedings - IEEE International Conference on Robotics and Automation, 2014, pp. 4974-4981.
- R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: A Versatile and Accurate Monocular SLAM System", IEEE Trans. Robot., Vol. 31, No. 5, pp. 1147-1163, 2015. https://doi.org/10.1109/TRO.2015.2463671
- E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative to SIFT or SURF", in Proceedings of the IEEE International Conference on Computer Vision, 2011, pp. 2564-2571.
- D. G. Lowe, "Distinctive image features from scale-invariant keypoints", Int. J. Comput. Vis., Vol. 60, No. 2, pp. 91-110, Nov. 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
- J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A benchmark for the evaluation of RGB-D SLAM systems", IEEE Int. Conf. Intell. Robot. Syst., pp. 573-580, 2012.
- P. Ji, "StereoScan : Dense 3D Reconstruction in", Ieeexplore.Ieee.Org, pp. 1-9, 2016.
- A. Solin, S. Cortes, E. Rahtu, and J. Kannala, "PIVO: Probabilistic inertial-visual odometry for occlusionrobust navigation", Proc. - 2018 IEEE Winter Conf. Appl. Comput. Vision, WACV 2018, Vol. 2018-Janua, pp. 616-625, 2018.
- R. Mur-Artal and J. D. Tardos, "Visual-Inertial Monocular SLAM with Map Reuse", IEEE Robot. Autom. Lett., Vol. 2, No. 2, pp. 796-803, Apr. 2016. https://doi.org/10.1109/LRA.2017.2653359
- T. Pire, T. Fischer, J. Civera, P. De Cristoforis, and J. J. Berlles, "Stereo parallel tracking and mapping for robot localization", in IEEE International Conference on Intelligent Robots and Systems, 2015, Vol. 2015-Decem, pp. 1373-1378.
- N. Krombach, D. Droeschel, and S. Behnke, "Combining feature-based and direct methods for semi-dense real-time stereo visual odometry", Adv. Intell. Syst. Comput., Vol. 531, No. July, pp. 855-868, 2017.