DOI QR코드

DOI QR Code

여자 청소년 및 젊은 여성의 비타민 D 결핍과 빈혈과의 연관성 분석

Association between vitamin D deficiency and anemia among Korean adolescent girls and young women

  • 장하은 (영남대학교 식품영양학과) ;
  • 박성희 (영남대학교 식품영양학과) ;
  • 박경 (영남대학교 식품영양학과)
  • Jang, Haeun (Department of Food and Nutrition, Yeungnam University) ;
  • Park, Seonghee (Department of Food and Nutrition, Yeungnam University) ;
  • Park, Kyong (Department of Food and Nutrition, Yeungnam University)
  • 투고 : 2019.08.30
  • 심사 : 2019.12.10
  • 발행 : 2019.12.31

초록

본 연구는 2008 ~ 2014년까지 수행된 국민건강영양조사 자료를 활용하였다. 본 분석 대상자는 12 ~ 29세 여자 청소년 및 젊은 여성이며, 이들을 대상으로 비타민 D 결핍 여부에 따른 빈혈 및 철 결핍성 빈혈과의 연관성 분석을 실시하였다. 그 결과, 교란인자를 보정한 다중 로지스틱 회귀분석 모델에서 비타민 D 결핍군이 충분군보다 빈혈 및 철 결핍성 빈혈의 유병률이 유의적으로 높았다. 또한 혈청 25(OH)D 농도가 증가함에 따라 빈혈 및 철 결핍성 빈혈의 유병률이 낮아지는 선형 관계가 나타났다. 본 연구의 결과는 청소년 및 젊은 여성에서 문제가 되고 있는 비타민 D 결핍과 빈혈에 대한 예방 및 관리에 기초자료를 제공할 수 있다고 기대된다. 추후 전향적인 코호트 연구 및 임상시험 연구 설계를 이용한 후속 연구를 수행하여 비타민 D와 빈혈 사이의 명확한 인과관계를 확인할 필요가 있다고 사료된다.

Purpose: Although vitamin D deficiency is common among Korean adolescent girls and young women, few studies have explored the potential health effects of vitamin D deficiency in this vulnerable population. This study examined the association between vitamin D deficiency and anemia in Korean adolescent girls and young women. Methods: The data from the Korea National Health and Nutrition Examination Survey 2008 ~ 2014 were used. A total of 3,643 girls and adult women aged 12 to 29 who provided all the information (including serum 25-hydroxy vitamin D, hemoglobin, and/or serum ferritin) needed for the analysis were included in the analysis. Demographic, lifestyle, and health data were obtained through survey questionnaires. Anemia and iron deficiency anemia were defined according to the World Health Organization cut-offs. Multivariable logistic regression, and restricted cubic spline regression were used in the analysis. Results: In fully adjusted logistic regression models, the vitamin D deficiency was significantly associated with higher prevalences of anemia (odds ratio (OR): 1.61, 95% confidence interval (CI): 1.04 ~ 2.49) and iron deficiency anemia (OR: 1.43, 95% CI: 1.01 ~ 2.03). In a cubic spline regression model, we observed a dose-response relationship between serum 25(OH)D concentration and anemia, and this linear relationship was also clearly observed between serum 25(OH)D concentration and iron deficiency anemia. Conclusion: Vitamin D deficiency may be associated with a higher prevalence of iron deficiency anemia and anemia in adolescent girls and young women. Alternatively, vitamin D deficiency may be a concurrent event for patients with anemia, which we cannot distinguish in this cross-sectional study. Further studies are needed to verify the causality in this population of low vitamin D levels.

키워드

참고문헌

  1. Health Insurance Review and Assessment Service (KR). Vitamin D deficiency could be developed frequently during winter season because of short-term sun exposure Gangwon-do Province Health Insurance Review and Assessment service [Internet]. Wonju: Health Insurance Review and Assessment Service; 2016 [cited 2018 Oct 6]. Available from: http://www.hira.or.kr/bbsDummy.do;INTERSESSIONID=3NFJrlIBy8E0D7WQHBMWFTcaDeX2vFfF9m84bsakSGvY27jlblYB!540393515!678406627?pgmid=HIRAA020041000100&brdScnBltNo=4&brdBltNo=9074&pageIndex=1#none.
  2. Jung IK. Prevalence of vitamin D deficiency in Korea: results from KNHANES 2010 to 2011. J Nutr Health 2013; 46(6): 540-551. https://doi.org/10.4163/jnh.2013.46.6.540
  3. Stagi S, Cavalli L, Iurato C, Seminara S, Brandi ML, de Martino M. Bone metabolism in children and adolescents: main characteristics of the determinants of peak bone mass. Clin Cases Miner Bone Metab 2013; 10(3): 172-179.
  4. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 2016; 27(4): 1281-1386. https://doi.org/10.1007/s00198-015-3440-3
  5. Carvalho C, Isakova T, Collerone G, Olbina G, Wolf M, Westerman M, et al. Hepcidin and disordered mineral metabolism in chronic kidney disease. Clin Nephrol 2011; 76(2): 90-98. https://doi.org/10.5414/CN107018
  6. Van Assendelft O, Bakes-Martin RC, Bern C, Bowman BA, Clark LD, Grummer-Strawn L, et al. Recommendations to prevent and control iron deficiency in the United States [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; 1998 [cited 2018 Aug 20]. Available from: https://stacks.cdc.gov/view/cdc/5659.
  7. Lee JO, Lee JH, Ahn S, Kim JW, Chang H, Kim YJ, et al. Prevalence and risk factors for iron deficiency anemia in the Korean population: results of the fifth Korea National Health and Nutrition Examination Survey. J Korean Med Sci 2014; 29(2): 224-229. https://doi.org/10.3346/jkms.2014.29.2.224
  8. Palaniswamy S, Hypponen E, Williams DM, Jokelainen J, Lowry E, Keinanen-Kiukaanniemi S, et al. Potential determinants of vitamin D in Finnish adults: a cross-sectional study from the Northern Finland birth cohort 1966. BMJ Open 2017; 7(3): e013161. https://doi.org/10.1136/bmjopen-2016-013161
  9. Shirazi L, Almquist M, Malm J, Wirfalt E, Manjer J. Determinants of serum levels of vitamin D: a study of life-style, menopausal status, dietary intake, serum calcium, and PTH. BMC Womens Health 2013; 13: 33. https://doi.org/10.1186/1472-6874-13-33
  10. Touvier M, Deschasaux M, Montourcy M, Sutton A, Charnaux N, Kesse-Guyot E, et al. Determinants of vitamin D status in Caucasian adults: influence of sun exposure, dietary intake, sociodemographic, lifestyle, anthropometric, and genetic factors. J Invest Dermatol 2015; 135(2): 378-388. https://doi.org/10.1038/jid.2014.400
  11. van Dam RM, Snijder MB, Dekker JM, Stehouwer CD, Bouter LM, Heine RJ, et al. Potentially modifiable determinants of vitamin D status in an older population in the Netherlands: the Hoorn Study. Am J Clin Nutr 2007; 85(3): 755-761. https://doi.org/10.1093/ajcn/85.3.755
  12. Rassouli A, Milanian I, Moslemi-Zadeh M. Determination of serum 25-hydroxyvitamin D(3) levels in early postmenopausal Iranian women: relationship with bone mineral density. Bone 2001; 29(5): 428-430. https://doi.org/10.1016/S8756-3282(01)00591-9
  13. Yoon JS, Song MK. Vitamin D intake, outdoor activity time and serum 25-OH vitamin D concentrations of Korean postmenopausal women by season and by age. Korean J Community Nutr 2015; 20(2): 120-128. https://doi.org/10.5720/kjcn.2015.20.2.120
  14. Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, et al. Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 2005; 90(6): 3215-3224. https://doi.org/10.1210/jc.2004-2364
  15. Liu BA, Gordon M, Labranche JM, Murray TM, Vieth R, Shear NH. Seasonal prevalence of vitamin D deficiency in institutionalized older adults. J Am Geriatr Soc 1997; 45(5): 598-603. https://doi.org/10.1111/j.1532-5415.1997.tb03094.x
  16. Lee JA, Hwang JS, Hwang IT, Kim DH, Seo JH, Lim JS. Low vitamin D levels are associated with both iron deficiency and anemia in children and adolescents. Pediatr Hematol Oncol 2015; 32(2): 99-108. https://doi.org/10.3109/08880018.2014.983623
  17. National Sleep Foundation (US). National sleep foundation recommends new sleep times [Internet]. Washington, D.C.: National Sleep Foundation; 2015 [cited 2019 Jun 18]. Available from: https://sleepfoundation.org/press-release/national-sleepfoundation-recommends-new-sleep-times/page/0/1.
  18. World Health Organization. The Asia-Pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia; 2000.
  19. Kim JH, Yun S, Hwang SS, Shim JO, Chae HW, Lee YJ, et al. The 2017 Korean National Growth Charts for children and adolescents: development, improvement, and prospects. Korean J Pediatr 2018; 61(5): 135-149. https://doi.org/10.3345/kjp.2018.61.5.135
  20. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary reference intakes for calcium and vitamin D. Washington, D.C: National Academies Press; 2010.
  21. World Health Organization. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations [Internet]. Geneva: World Health Organization; 2011 [cited 2019 Jan 10]. Available from: http://www.who.int/iris/handle/10665/85843.
  22. World Health Organization. Nutritional anaemias: tools for effective prevention and control [Internet]. World Health Organization; 2017 [cited 2018 Sep 28]. Available from: https://www.who.int/nutrition/publications/micronutrients/anaemias-tools-prevention-control/en/.
  23. Munasinghe LL, Ekwaru JP, Mastroeni MF, Mastroeni SS, Veugelers PJ. The association of serum 25-hydroxyvitamin D concentrations with elevated serum ferritin levels in normal weight, overweight and obese Canadians. PLoS One 2019; 14(3): e0213260. https://doi.org/10.1371/journal.pone.0213260
  24. Larose TL, Chen Y, Camargo CA Jr, Langhammer A, Romundstad P, Mai XM. Factors associated with vitamin D deficiency in a Norwegian population: the HUNT Study. J Epidemiol Community Health 2014; 68(2): 165-170. https://doi.org/10.1136/jech-2013-202587
  25. Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev 2015; 16(4): 341-349. https://doi.org/10.1111/obr.12239
  26. Huang YF, Tok TS, Lu CL, Ko HC, Chen MY, Chen SC. Relationship between being overweight and iron deficiency in adolescents. Pediatr Neonatol 2015; 56(6): 386-392. https://doi.org/10.1016/j.pedneo.2015.02.003
  27. Naude CE, Carey PD, Laubscher R, Fein G, Senekal M. Vitamin D and calcium status in South African adolescents with alcohol use disorders. Nutrients 2012; 4(8): 1076-1094. https://doi.org/10.3390/nu4081076
  28. Prentice A. Vitamin D deficiency: a global perspective. Nutr Rev 2008; 66(10 Suppl 2): S153-S164. https://doi.org/10.1111/j.1753-4887.2008.00100.x
  29. Dong Y, Pollock N, Stallmann-Jorgensen IS, Gutin B, Lan L, Chen TC, et al. Low 25-hydroxyvitamin D levels in adolescents: race, season, adiposity, physical activity, and fitness. Pediatrics 2010; 125(6): 1104-1111. https://doi.org/10.1542/peds.2009-2055
  30. BinSaeed AA, Torchyan AA, AlOmair BN, AlQadhib NS, AlSuwayeh FM, Monshi FM, et al. Determinants of vitamin D deficiency among undergraduate medical students in Saudi Arabia. Eur J Clin Nutr 2015; 69(10): 1151-1155. https://doi.org/10.1038/ejcn.2014.286
  31. Choi EY. 25(OH)D status and demographic and lifestyle determinants of 25(OH)D among Korean adults. Asia Pac J Clin Nutr 2012; 21(4): 526-535.
  32. Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res 1996; 11(10): 1539-1544. https://doi.org/10.1002/jbmr.5650111022
  33. Chowdhury R, Taneja S, Bhandari N, Strand TA, Bhan MK. Vitamin D deficiency and mild to moderate anemia in young North Indian children: a secondary data analysis. Nutrition 2019; 57: 63-68. https://doi.org/10.1016/j.nut.2018.05.034
  34. Atkinson MA, Melamed ML, Kumar J, Roy CN, Miller ER 3rd, Furth SL, et al. Vitamin D, race, and risk for anemia in children. J Pediatr 2014; 164(1): 153-158.e1. https://doi.org/10.1016/j.jpeds.2013.08.060
  35. Liu T, Zhong S, Liu L, Liu S, Li X, Zhou T, et al. Vitamin D deficiency and the risk of anemia: a meta-analysis of observational studies. Ren Fail 2015; 37(6): 929-934. https://doi.org/10.3109/0886022X.2015.1052979
  36. Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med 1989; 320(15): 980-991. https://doi.org/10.1056/NEJM198904133201506
  37. Norman AW. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 2006; 147(12): 5542-5548. https://doi.org/10.1210/en.2006-0946
  38. Blazsek I, Farabos C, Quittet P, Labat ML, Bringuier AF, Triana BK, et al. Bone marrow stromal cell defects and 1 alpha,25-dihydroxyvitamin D3 deficiency underlying human myeloid leukemias. Cancer Detect Prev 1996; 20(1): 31-42.
  39. Icardi A, Paoletti E, De Nicola L, Mazzaferro S, Russo R, Cozzolino M. Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: the potential role of inflammation. Nephrol Dial Transplant 2013; 28(7): 1672-1679. https://doi.org/10.1093/ndt/gft021
  40. Shin JY, Shim JY. Low vitamin D levels increase anemia risk in Korean women. Clin Chim Acta 2013; 421: 177-180. https://doi.org/10.1016/j.cca.2013.02.025
  41. Blanco-Rojo R, Perez-Granados AM, Toxqui L, Zazo P, de la Piedra C, Vaquero MP. Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur J Nutr 2013; 52(2): 695-703. https://doi.org/10.1007/s00394-012-0375-8
  42. Ganz T. Systemic iron homeostasis. Physiol Rev 2013; 93(4): 1721-1741. https://doi.org/10.1152/physrev.00008.2013