DOI QR코드

DOI QR Code

Splenocyte-mediated immune enhancing activity of Sargassum horneri extracts

괭생이 모자반 추출물의 비장세포 면역활성 증강 효과

  • Kim, Dong-Sub (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Sung, Nak-Yun (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Han, In-Jun (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Lee, Byung-Soo (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Park, Sang-Yun (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Nho, Eun Young (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Eom, Ji (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Kim, Geon (Division of Natural Product Research, Korea Prime Pharmacy CO., LTD.) ;
  • Kim, Kyung-Ah (Dept. of Food and Nutrition, Chungnam National University)
  • Received : 2019.09.23
  • Accepted : 2019.10.30
  • Published : 2019.12.31

Abstract

Purpose: This study examined the immunological activity and optimized the mixture conditions of Sargassum horneri (S. horneri) extracts in vitro and in vivo models. Methods: S. horneri was extracted using three different methods: hot water extraction (HWE), 50% ethanol extraction (EE), and supercritical fluid extraction (SFE). Splenocyte proliferation and cytokine production (Interleukin-2 and Interferon-γ) were measured using a WST-1 assay and enzyme-linked immunosorbent assay, respectively. The levels of nitric oxide and T cell activation production were measured using a Griess assay and flow cytometry, respectively. The natural killer (NK) cell activity was determined using an EZ-LDH kit. Results: Among the three different types of extracts, HWE showed the highest levels of splenocyte proliferation and cytokine production in vitro. In the animal model, three different types of extracts were administrated for 14 days (once/day) at 50 and 100 mg/kg body weight. HWE and SFE showed a high level of splenocyte proliferation and cytokine production in the with and without mitogen-treated groups, whereas EE administration did not induce the splenocyte activation. When RAW264.7 macrophage cells were treated with different mixtures (HWE with 5, 10, 15, 20% of SFE) to determine the optimal mixture ratio of HWE and SFE, the levels of nitric oxide and cytokine production increased strongly in the HWE with 5% and 10% of SFE containing group. In the animal model, HWE with 5% and 10% of SFE mixture administration increased the levels of splenocyte proliferation, cytokine production, and activated CD4+ cell population significantly, with the highest level observed in the HWE with 5% of SFE group. Moreover, the NK cell activity was increased significantly in the HWE with 5% of SFE mixture-treated group compared to the control group. Conclusion: The optimal mixture condition of S. horneri with immune-enhancing activity is the HWE with 5% of SFE mixture. These results confirmed that the extracts of S. horneri and its mixtures are potential candidate materials for immune enhancement.

본 연구는 괭생이 모자반 추출물의 추출방법에 따른 면역증강활성에 관하여 비교 관찰하였고, 추출물간의 혼합비율을 다르게 혼합하여 제조한 괭생이 모자반 추출물의 최적 면역활성을 갖는 혼합비를 평가하였다. 비장세포에 괭생이 모자반 열수 (HWE), 주정 (EE), 초임계 (SFE) 추출물을 각각 처리하였을 때 HWE 및 SFE 처리구에서 비장세포 증식능 및 사이토카인 (IL-2, IFN-γ) 분비능이 높게 나타나는 것으로 관찰되었고, 각각의 추출물을 50, 100 mg/kg BW의 농도로 2주간 마우스에 투여하고 비장을 적출하여 비장세포 활성능에 관하여 관찰한 결과, HWE 및 SFE 투여구에서 비장세포 증식능 및 사이토카인 분비능이 높게 나타나는 것으로 관찰되었다. 동물실험에서 높은 활성을 보인 HWE와 SFE의 추출물의 혼합 최적비를 평가하기 위하여 HWE에 SFE를 5, 10, 15 및 20%로 혼합하여 대식세포에 처리하여 NO 및 사이토카인 분비능에 관하여 관찰한 결과, SFE를 5%, 10% 혼합한 추출물 처리구에서 활성이 높게 나타나는 것으로 관찰되었으며 혼합추출물을 100 mg/kg BW으로 14일간 투여한 마우스의 비장세포 활성에 관하여 관찰한 결과, SFE를 5%의 비율로 혼합한 추출물 처리구 비장세포 활성이 높게 나타나는 것으로 관찰되어 HWE와 SFE의 최적 혼합 비율을 HWE에 SFE를 5% 첨가하는 것으로 결정하였다. 결정된 최적혼합비로 100 mg/kg BW의 농도로 14일간 투여한 마우스의 비장세포에서 NK 세포를 분리하여 NK 세포의 활성능을 평가한 결과, 대조구 대비 높게 증가하는 것으로 나타났다. 따라서 괭생이 모자반 추출물을 최적비율로 혼합하여 제조한 혼합추출물은 비장세포, 대식세포 및 NK 세포에 대한 높은 활성능을 나타내어 면역증진에 기여하는 것으로 판단된다.

Keywords

References

  1. Tomasi TB Jr, Tan EM, Solomon A, Prendergast RA. Characteristics of an immune system common to certain external secretions. J Exp Med 1965; 121(1): 101-124. https://doi.org/10.1084/jem.121.1.101
  2. Byun EH. Immunomodulatory activities of crude polysaccharide fraction separated from Perilla frutescens Britton var. acuta Kudo. Korean J Food Sci Technol 2017; 49(5): 559-566. https://doi.org/10.9721/KJFST.2017.49.5.559
  3. Cho EJ, Lee JH, Sung NY, Byun EH. Anti-inflammatory effects of Annona muricata leaf ethanol extracts. J Korean Soc Food Sci Nutr 2017; 46(6): 681-687. https://doi.org/10.3746/jkfn.2017.46.6.681
  4. Kim YE, Lee JH, Sung NY, Ahn DH, Byun EH. A comparative study of the immuno-modulatory activities of ethanol extracts and crude polysaccharide fractions from Annona muricata L. Korean J Food Sci Technol 2017; 49(4): 453-458. https://doi.org/10.9721/KJFST.2017.49.4.453
  5. Klimp AH, de Vries EG, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 2002; 44(2): 143-161. https://doi.org/10.1016/S1040-8428(01)00203-7
  6. Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006; 6(3): 317-333. https://doi.org/10.1016/j.intimp.2005.10.005
  7. Sung NY, Park WY, Kim YE, Cho EJ, Song H, Jun HK, et al. Increase in antioxidant components and reduction of off-flavors on radish leaf extracts by extrusion process. J Korean Soc Food Sci Nutr 2016; 45(12): 1769-1775. https://doi.org/10.3746/jkfn.2016.45.12.1769
  8. Kim JS, Oh CH, Jeon H, Lee KS, Ma SY. Immuno-regulatory property of fruit-extracts of Cornus kousa Burg. Korean J Med Crop Sci 2002; 10(5): 327-332.
  9. Lee JY, Hwang WI, Lim ST. Effect of Platycodon grandiflorum DC extract on the growth of cancer cell lines. Korean J Food Sci Technol 1998; 30(1): 13-21.
  10. Byrd JC, Park JH, Schaffer BS, Garmroudi F, MacDonald RG. Dimerization of the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem 2000; 275(25): 18647-18656. https://doi.org/10.1074/jbc.M001273200
  11. Brown ES, Allsopp PJ, Magee PJ, Gill CI, Nitecki S, Strain CR, et al. Seaweed and human health. Nutr Rev 2014; 72(3): 205-216. https://doi.org/10.1111/nure.12091
  12. Kim NG. Effects of temperature, photon irradiance, and photoperiod on the growth of embryos of Sargassum horneri in laboratory culture. Korean J Fish Aquat Sci 2015; 48(1): 76-81. https://doi.org/10.5657/KFAS.2015.0076
  13. Liu L, Heinrich M, Myers S, Dworjanyn SA. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J Ethnopharmacol 2012; 142(3): 591-619. https://doi.org/10.1016/j.jep.2012.05.046
  14. Preeprame S, Hayashi K, Lee JB, Sankawa U, Hayashi T. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem Pharm Bull (Tokyo) 2001; 49(4): 484-485. https://doi.org/10.1248/cpb.49.484
  15. Matsumura Y. Nutrition trends in Japan. Asia Pac J Clin Nutr 2001; 10 Suppl: S40-S47. https://doi.org/10.1046/j.1440-6047.2001.00215.x
  16. McHugh DJ. A guide to the seaweed industry. Rome: Food and Agriculture Organization of the United Nations; 2003.
  17. Cardoso SM, Pereira OR, Seca AM, Pinto DC, Silva AM. Seaweeds as preventive agents for cardiovascular diseases: from nutrients to functional foods. Mar Drugs 2015; 13(11): 6838-6865. https://doi.org/10.3390/md13116838
  18. Yamaguchi M. Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. Yakugaku Zasshi 2006; 126(11): 1117-1137. https://doi.org/10.1248/yakushi.126.1117
  19. Shao P, Chen X, Sun P. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr Polym 2014; 105: 260-269. https://doi.org/10.1016/j.carbpol.2014.01.073
  20. Shao P, Liu J, Chen X, Fang Z, Sun P. Structural features and antitumor activity of a purified polysaccharide extracted from Sargassum horneri. Int J Biol Macromol 2015; 73: 124-130. https://doi.org/10.1016/j.ijbiomac.2014.10.056
  21. Kim DS, Sung NY, Park SY, Kim G, Eom J, Yoo JG, et al. Immunomodulating activity of Sargassum horneri extracts in RAW264.7 macrophages. J Nutr Health 2018; 51(6): 507-514. https://doi.org/10.4163/jnh.2018.51.6.507
  22. Kang BK, Kim KBWR, Ahn NK, Choi YU, Kim MJ, Bark SW, et al. Immuno-stimulating activities of skipjack tuna Katsuwonus pelamis cooking juice concentrates on mouse macrophages and spleen cells. Korean J Fish Aquat Sci 2014; 47(6): 776-784. https://doi.org/10.5657/KFAS.2014.0776
  23. Shan BE, Yoshida Y, Kuroda E, Yamashita U. Immunomodulating activity of seaweed extract on human lymphocytes in vitro. Int J Immunopharmacol 1999; 21(1): 59-70. https://doi.org/10.1016/S0192-0561(98)00063-0
  24. Mischell BB, Shiigi SM. Normal peritoneal cells. In: Mischell BB, Shiigi SM, editors. Selected Methods in Cellular Immunology. San Fransisco (CA): W. H. Freman and Company; 1980. p.156.
  25. Kim P, Ko SK, Pyo MY. Effects of hot water extract of chaga mushroom on the proliferation and cytokines production of mouse splenocytes in vitro. Yakhak Hoeji 2010; 54(3): 187-191.
  26. Lee JK, Lee MK, Yun YP, Kim Y, Kim JS, Kim YS, et al. Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int Immunopharmacol 2001; 1(7): 1275-1284. https://doi.org/10.1016/S1567-5769(01)00052-2
  27. Kim BH, Cho DH, Cho JY. Modulatory effect of kaempferitrin, a 3,7-diglycosylflavone, on the LPS-mediated up-regulation of surface co-stimulatory molecules and CD29-mediated cell-cell adhesion in monocytic- and macrophage-like cells. Yakhak Hoeji 2007; 51(6): 482-489.
  28. Virchow JC Jr, Oehling A, Boer L, Hansel TT, Werner P, Matthys H, et al. Pulmonary function, activated T cells, peripheral blood eosinophilia, and serum activity for eosinophil survival in vitro: a longitudinal study in bronchial asthma. J Allergy Clin Immunol 1994; 94(2 Pt 1): 240-249. https://doi.org/10.1053/ai.1994.v94.a55250
  29. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151-1164.
  30. Byun MW, Byun EH. Immunological synergistic effects of combined treatment with herbal preparation (HemoHIM) and red ginseng extracts. J Korean Soc Food Sci Nutr 2015; 44(2): 182-190. https://doi.org/10.3746/JKFN.2015.44.2.182
  31. Chiou WF, Chou CJ, Chen CF. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci 2001; 69(6): 625-635. https://doi.org/10.1016/S0024-3205(01)01154-7
  32. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988; 157(1): 87-94. https://doi.org/10.1016/S0006-291X(88)80015-9
  33. Pyo SN, Son EH. Introduction to immunology. Seoul: Shinil Books; 2008.
  34. Lee GN, Kwon OH. Clinical laboratory file. 3rd edition. Seoul: Medical Publisher; 2003.
  35. Pisa P, Halapi E, Pisa EK, Gerdin E, Hising C, Bucht A, et al. Selective expression of interleukin 10, interferon gamma, and granulocyte-macrophage colony-stimulating factor in ovarian cancer biopsies. Proc Natl Acad Sci U S A 1992; 89(16): 7708-7712. https://doi.org/10.1073/pnas.89.16.7708
  36. Sypek JP, Chung CL, Mayor SE, Subramanyam JM, Goldman SJ, Sieburth DS, et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med 1993; 177(6): 1797-1802. https://doi.org/10.1084/jem.177.6.1797
  37. Lee JW, Jang MH, Choi JS, Ahn TW. The effect of Yongyukjowitang distillate on the immune activity of spleen cells of aged rats. J Sasang Const Med 2013; 25(3): 218-232. https://doi.org/10.7730/JSCM.2013.25.3.218
  38. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17(1): 189-220. https://doi.org/10.1146/annurev.immunol.17.1.189
  39. Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. Natural killer cell-produced IFN-${\gamma}$ and $TNF-{\alpha}$ induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol 2012; 91(2): 299-309. https://doi.org/10.1189/jlb.0611308
  40. Frese-Schaper M, Keil A, Yagita H, Steiner SK, Falk W, Schmid RA, et al. Influence of natural killer cells and perforinmediated cytolysis on the development of chemically induced lung cancer in A/J mice. Cancer Immunol Immunother 2014; 63(6): 571-580. https://doi.org/10.1007/s00262-014-1535-x
  41. Li Q, Morimoto K, Nakadai A, Inagaki H, Katsumata M, Shimizu T, et al. Forest bathing enhances human natural killer activity and expression of anti-cancer proteins. Int J Immunopathol Pharmacol 2007; 20(2 suppl 2): 3-8. https://doi.org/10.1177/03946320070200S202