참고문헌
- Park JM, Park SY, Kim HJ, Wu HG, Carlson J, Kim JI. A comparative planning study for lung SABR between tri-Co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiother. Oncol. 2016;120(2):279-285. https://doi.org/10.1016/j.radonc.2016.06.013
- Choi CH, Park SY, Kim JI, Kim JH, Kim K, Carlson J, Park JM. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br. J. Radiol. 2017;90(1070):20160652. https://doi.org/10.1259/bjr.20160652
- Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br. J. Radiol. 2006;79(1):S2-S15. https://doi.org/10.1259/bjr/41321492
- Schultheiss TE, Tome WA, Orton CG. Point/counterpoint: it is not appropriate to "deform" dose along with deformable image registration in adaptive radiotherapy. Med. Phys. 2012;39(11):6531-6533. https://doi.org/10.1118/1.4722968
- Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 2017;44(4):1408-1419. https://doi.org/10.1002/mp.12155
- Dreiseitl S, Ohno-Machado L, Kittler H, Vinterbo S, Billhardt H, Binder M. A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J. Biomed. Inform. 2001;34(1):28-36. https://doi.org/10.1006/jbin.2001.1004
- Wei L, Yang Y, Nishikawa R, Jiang Y. A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications. IEEE Trans. Med. Imaging. 2005;24(3):371-380. https://doi.org/10.1109/TMI.2004.842457
- Jones N. Computer science: The learning machines. Nature. 2014;505(7482):146-148. https://doi.org/10.1038/505146a
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. Springer, Cham. 2015:234-241.
- Seregni M, Paganelli C, Summers P, Bellomi M, Baroni G, Riboldi M. A Hybrid Image Registration and Matching Framework for Real-Time Motion Tracking in MRI-Guided Radiotherapy. IEEE Trans. Biomed. Eng. 2018;65(1):131-139. https://doi.org/10.1109/TBME.2017.2696361
- McPartlin AJ, et al. MRI-guided prostate adaptive radiotherapy - A systematic review. Radiother. Oncol. 2016;119(3):371-380. https://doi.org/10.1016/j.radonc.2016.04.014
- Vestergaard A, et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother. Oncol. 2016;118(1):154-159. https://doi.org/10.1016/j.radonc.2015.11.003
- Abedi I, Tavakkoli MB, Jabbari K, Amouheidari A, Yadegarfard G. Dosimetric and Radiobiological Evaluation of Multiparametric MRI-Guided Dose Painting in Radiotherapy of Prostate Cancer. J. Med. Signals Sens. 2017;7(2):114-121. https://doi.org/10.4103/2228-7477.205504
- Jeon SH, Shin KH, Park SY, Kim JI, Park JM, Kim JH, Chie EK, Wu H. Seroma changes during magnetic resonance imaging-guided partial breast irradiation and its clinical implications. Radiat. Oncol. 2017;12(1):103. https://doi.org/10.1186/s13014-017-0843-7
- Chen AM, Hsu S, Lamb J, Yang Y, Agazaryan N, Steinberg ML, Low DA, Cao M. MRI-guided radiotherapy for head and neck cancer: initial clinical experience. Clin. Transl. Oncol. 2018;20(2):160-168. https://doi.org/10.1007/s12094-017-1704-4
- Lee HJ, Kadbi M, Bosco G, Ibbott GS. Real-time volumetric relative dosimetry for magnetic resonance-image-guided radiation therapy (MR-IGRT). Phys. Med. Biol. 2018;63(4):045021. https://doi.org/10.1088/1361-6560/aaac22
피인용 문헌
- Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review vol.89, 2019, https://doi.org/10.1016/j.ejmp.2021.07.027
- Deep learning based synthetic‐CT generation in radiotherapy and PET: A review vol.48, pp.11, 2019, https://doi.org/10.1002/mp.15150