DOI QR코드

DOI QR Code

콘크리트 내 실리카퓸을 대체하기 위한 페로실리콘 산업부산물의 활용 적절성에 대한 연구

A Feasibility Study on the Application of Ferrosilicon By-Product in Concrete to Replace Silica Fume

  • 김한솔 (한양대학교 건설환경시스템공학과) ;
  • 조원정 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Kim, Hansol (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Cho, Won Jung (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Ann, Ki Yong (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2019.11.08
  • 심사 : 2019.12.02
  • 발행 : 2019.12.30

초록

콘크리트 혼화재인 보통 포틀랜드 시멘트를 대체하기 위하여 페로실리콘 산업부산물을 적용하였다. 페로실리콘의 원재료 비표면적, 비중과 같은 기초물성은 실리카퓸과 매우 유사하다. 따라서 전체 혼화재 중량의 10%를 페로실리콘 또는 실리카퓸으로 치환한 콘크리트와 모르타르를 제작하여 페로실리콘의 혼화재로써의 사용 타당성을 평가하였고, 보통 포틀랜드 시멘트, 페로실리콘, 실리카퓸 콘크리트에 대한 비교 분석 결과를 나타냈다. 페로실리콘 콘크리트의 수화특성은 X선 회절 분석을 통하여 수행하였다. 페로실리콘 콘크리트는 압축강도, 염분침투 저항성, 공극 저감의 측면에서 보통 포틀랜드 시멘트 콘크리트 보다 장점을 보였으나 그 정도는 실리카퓸 보다 낮았다. 페로실리콘 콘크리트에 대하여 알칼리-실리카 반응에 의한 팽창 가능성이 확인되었는데 이는 실리카 입자의 뭉쳐진 덩어리 크기 때문인 것으로 판단된다.

A ferrosilicon (FS) by-product was applied into a cementitious binder in concrete substituting the ordinary Portland cement (OPC). The original material characteristic of FS is very identical to silica fume (SF) regarding chemical composition and physical properties such as specific surface area and specific gravity. Therefore, the FS and SF concrete or mortal of which 10% of the material was replaced to total binder weight were fabricated to evaluate the feasibility of using F S as a binder, and the comparative information of OPC, FS and SF concrete was given. The hydration characteristic of FS concrete was analyzed using X-ray diffraction analysis. The FS concrete was beneficial in compressive strength, resistivity against chloride ingress and reducing porosity considering performance of OPC concrete but the advantage was less than using SF. A possibility of alkali-silica expansion was found out from the FS concrete due to the agglomerated size of the silica particles.

키워드

참고문헌

  1. ACI committee 234 (2012). ACI 234R-06: Guide for the Use of Silica Fume in Concrete (Reapproved 2012).
  2. ASTM C1240-15 (2015). Standard Specification for Silica Fume Used in Cementitious Mixtures.
  3. ASTM C1260-14 (2014). Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method).
  4. ASTM C1437-15 (2015). Standard Test Method for Flow of Hydraulic Cement Mortar.
  5. Boddy, A.M., Hooton, R.D., Thomas, M.D.A. (2003). The effect of the silica content of silica fume on its ability to control alkali-silica reaction, Cement and Concrete research, 33(8), 1263-1268. https://doi.org/10.1016/S0008-8846(03)00058-9
  6. Diamond, S. (2000). Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials, Cement and Concrete Research, 30(10), 1517-1525. https://doi.org/10.1016/S0008-8846(00)00370-7
  7. Flores, Y.C., Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M. (2017). Performance of portland cement pastes containing nano-silica and different types of silica, Construction and Building Materials, 146, 524-530. https://doi.org/10.1016/j.conbuildmat.2017.04.069
  8. Hewlett, P., Liska, M. (Eds.). (2019). Lea's Chemistry of Cement and Concrete, Chapter 11, Microsilica as an Addition Butterworth-Heinemann.
  9. Hooton, R.D. (1993). Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkali-silica reactivity, ACI Materials Journal, 90(2), 143-151.
  10. Juenger, M.C.G., Ostertag, C.P. (2004). Alkali-silica reactivity of large silica fume-derived particles, Cement and Concrete Research, 34(8), 1389-1402. https://doi.org/10.1016/j.cemconres.2004.01.001
  11. KS A 0094:2014 (2014). Determination of the Specific Surface Area of Powders(solids) by Gas Adsorption Method [in Korean].
  12. KS F 2405:2010 (2017). Standard Test Method for Compressive Strength of Concrete [in Korean].
  13. KS F 2436:2017 (2017). Standard Test Method for Setting Times of Concrete Mixture by Penetration Resistance [in Korean].
  14. KS F 2567:2009 (2009). Silica Fume for Use in Concrete [in Korean].
  15. KS F 2711:2017 (2017). Standard Test Method for Resistance of Concrete to Chloride Ion Penetration by Electrical Conductance [in Korean].
  16. KS L 5110:2001 (2016). Testing Method for Specific Gravity of Hydraulic Cement [in Korean].
  17. KS L 5111:2017 (2017). Flow Table for Use in Tests of Hydraulic Cement [in Korean].
  18. Page, C.L., Vennesland, O. (1983). Pore solution composition and chloride binding capacity of silica-fume cement pastes, Materiaux et Construction, 16(1), 19-25. https://doi.org/10.1007/BF02474863
  19. Poon, C.S., Kou, S.C., Lam, L. (2006). Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Construction and building materials, 20(10), 858-865. https://doi.org/10.1016/j.conbuildmat.2005.07.001
  20. Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, TX.
  21. Provis, J.L., Van Deventer, J.S. (Eds.). (2013). Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM (Vol. 13). Chapter 8. Durability and Testing - Chemical Matrix Degradation Process, Springer Science & Business Media.
  22. Rossen, J.E., Lothenbach, B., Scrivener, K.L. (2015). Composition of C-S-H in pastes with increasing levels of silica fume addition, Cement and Concrete Research, 75, 14-22. https://doi.org/10.1016/j.cemconres.2015.04.016
  23. Sanjuan, M.A., Argiz, C., Galvez, J.C., Moragues, A. (2015). Effect of silica fume fineness on the improvement of portland cement strength performance, Construction and Building Materials, 96, 55-64. https://doi.org/10.1016/j.conbuildmat.2015.07.092
  24. Siddique, R., Chahal, N. (2011). Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar, Resources, Conservation and Recycling, 55(8), 739-744. https://doi.org/10.1016/j.resconrec.2011.03.004
  25. Wang, X., Huang, J., Ma, B., Dai, S., Jiang, Q., Tan, H. (2019). Effect of mixing sequence of calcium ion and polycarboxylate superplasticizer on dispersion of a low grade silica fume in cement-based materials, Construction and Building Materials, 195, 537-546. https://doi.org/10.1016/j.conbuildmat.2018.11.032
  26. Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume, Materials & Design, 64, 261-269. https://doi.org/10.1016/j.matdes.2014.07.042