DOI QR코드

DOI QR Code

5℃ 해수에 노출된 알칼리 활성 플라이애시-슬래그 시멘트의 기초 특성

Fundamental Characteristics of Activated Fly Ash-Slag Cement Exposed to 5℃ Seawater

  • 김태완 (부산대학교 토목공학과) ;
  • 전유빈 (한국과학기술원 건설및환경공학과)
  • Kim, Taewan (Department of Civil Engineering, Pusan National University) ;
  • Jun, Yubin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2019.09.11
  • 심사 : 2019.10.30
  • 발행 : 2019.12.30

초록

본 논문은 5℃의 해수 환경에 노출한 알칼리 활성 플라이애시-슬래그 시멘트의 기본 특성에 관한 실험적 연구이다. 플라이애시와 슬래그의 배합비는 6:4, 7:3 및 8:2의 세 가지로 하였으며, 활성화제(수산화나트륨 및 규산나트륨)는 결합재 중량의 5%로 하였다. 실험 결과는 플라이애시의 치환율이 증가할수록 압축강도와 밀도는 감소하는 것으로 나타났으며, 또한 흡수율은 증가하는 것으로 나타났다. 경화된 샘플의 열중량 및 X선 회절분석을 통해 샘플 내에 생성된 반응물의 종류에는 변화가 없었으나, 슬래그의 치환율이 높을수록 C-S-H gel의 생성은 증가한 것을 알 수 있었다. 본 연구에서는 5℃의 해수에 노출된 알칼리 활성 플라이애시-슬래그 시멘트에서 플라이애시 보다 오히려 슬래그의 치환율이 샘플의 역학적 특성에 영향을 미치는 것으로 나타났다.

This paper shows an experimental study for fundamental characteristics of alkali activated fly ash-slag cement paste exposed to seawater of 5℃. Fly ash and slag were blended in three different ratios; 6:4, 7:3, and 8:2. Activators (NaOH and Na2SiO3) used 5% of the binder weight. It was shown that as the fly ash substitution rate in creased, compressive strength and density decreased, and water absorption rate increased. The results of X-ray diffraction and thermogravimetry showed that hydration reactants formed in samples did not differ significantly, however, C-S-H gel increased as the slag substitution rate increased. It showed that mechanical properties of fly ash-slag cement pastes under 5℃ seawater condition were affected by the slag substitution rate rather than fly ash.

키워드

참고문헌

  1. Atis, C.D., Bilim, C., Celik, O., Karahan, O. (2009). Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Construction and Building Materials, 23, 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  2. Bae, J.R., Kim, T.W., Kim, I.T., Kim, H.S. (2017). The fundamental properties of high fluidity mortar with activated ternary blended slag cement, Journal of Korea Institute for Structural Maintenance and Inspection, 21(6), 74-82. https://doi.org/10.11112/jksmi.2017.21.6.074
  3. Bakharev. T., Sanjayan. J.G., Cheng, Y.B. (2010). Resistance of alkali-activated slag concrete to carbonation, Cement and Concrete Research, 31, 1277-1283. https://doi.org/10.1016/S0008-8846(01)00574-9
  4. Bakolas, A., Aggelakopoulou, E., Moropoulou, A., Anagnostopoulou, S. (2006). Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolinlime pastes, Journal of Thermal Analysis and Calorimetry, 84, 157-163. https://doi.org/10.1007/s10973-005-7262-y
  5. Bernal, S.A., Mejía De Gutiérrez, R., Provis, J.L. (2012). Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends, Construction and Building Materials, 65, 51-59. https://doi.org/10.1016/j.conbuildmat.2014.04.110
  6. Burciaga-Diaz, O., Escalante-Garcia, J.I. (2013). Struction, mechanism of reaction, and strength of an alkali-activated blast-furnace slag, Journal of American Ceramic Society, 96, 3939-3948. https://doi.org/10.1111/jace.12620
  7. Chi, M., Huang, R. (2013). Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construction and Building Materials, 40, 291-298. https://doi.org/10.1016/j.conbuildmat.2012.11.003
  8. Chindaprasirt, P., Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site, Construction and Building Materials, 63, 303-310. https://doi.org/10.1016/j.conbuildmat.2014.04.010
  9. El-Didamony, H., Amer, A.A., Ela-ziz, H.A. (2012). Properties and durability of alkali-activated slag pastes immersed in sea water, Ceramics International, 38, 3773-3780. https://doi.org/10.1016/j.ceramint.2012.01.024
  10. Fernandez-Jimenez, A., Monzo, M., Vicent, M., Barba, A., Palomo, A. (2008). Alkaline activation of metakaolin-fly ash mixtures: Obtain of Zeoceramics and Zeocements, Microporous and Mesoporous Materials, 108(1-3), 41-49. https://doi.org/10.1016/j.micromeso.2007.03.024
  11. Fernandez-Jimenez, A., Palomo, J.G., Puertas, F. (1999). Alkali-activated slag mortars Mechanical strength behavior, Cement and Concrete Research, 29, 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4
  12. Haha, M.B., Le Saout, G., Winnefeld, F., Lothenbach, B. (2011). Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cement and Concrete Research, 41, 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016
  13. Hwang, M.H., Han, D., Kim, I.S. (2017) Estimation of water production cost from seawater reverse osmosis (SWRO) plant in Korea, Journal of Korean Society Environmental Engineers, 39(4), 169-179 [in Korean]. https://doi.org/10.4491/KSEE.2017.39.4.169
  14. Ismail, I., Bernal, S.A., Provis, J.L., Nicolas, R.S., Brice, D.G., Kilcullen, A.R., Hamdan, S., van Deventer, J.S.J. (2013). Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes, Construction and Building Materials, 48, 1187-1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106
  15. Jun, Y., Oh, J.E. (2016). Microstructure and strength properties of alkali-activated binder mixed with sea water, Journal of the Korea Concrete Institute, 28, 299-308 [in Korean]. https://doi.org/10.4334/JKCI.2016.28.3.299
  16. Kumar, S., Kumar, R., Mehrotra, S.P. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, Journal of Material Science, 45, 607-615. https://doi.org/10.1007/s10853-009-3934-5
  17. Lee, N.K., Jang, J.G., Lee, H.K. (2014). Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages, Cement & Concrete Composites, 53, 239-248. https://doi.org/10.1016/j.cemconcomp.2014.07.007
  18. Lee, N.K., Lee, H.K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials, 47, 1201-1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107
  19. Nath, P., Sarker, P.K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Construction and Building Materials, 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  20. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S. (2008). Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, 22, 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015
  21. Provis, J.L., Palomo, A., Shi, C. (2015). Advances in understanding alkali-activated materials, Cement and Concrete Research, 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013
  22. Rashad, A.M. (2013). A comprehensive overview about the influence of different additives on the properties of alkali-activated slag-A guide for Civil Engineer, Construction and Building Materials, 47, 29-55. https://doi.org/10.1016/j.conbuildmat.2013.04.011
  23. Ravikumar, D., Neithalath, N. (2012). Effects of activator characteristics on the reaction product formation in slag binders activated using silicate powder and NaOH, Cement & Concrete Composites, 34, 809-818. https://doi.org/10.1016/j.cemconcomp.2012.03.006
  24. Song K.I., Lee, B.Y., Hong, G.H., Gong, M.H., Song, J.K. (2012). Effects of basicity on the carbonation characteristics of alkali-activated slag mortar, Journal of the Korea Concrete Institute, 24(5), 557-584 [in Korean].
  25. Vassileva, C.G., Vassilev, S.V. (2005). Behaviour of inorganic matter during heating of Bulgarian coals: 1. Lignites, Fuel Processing Technology, 86, 1297-1333. https://doi.org/10.1016/j.fuproc.2005.01.024
  26. Wang, W.C., Wang, H.Y., Lo, M.H. (2015). The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration, Construction and Building Materials, 84, 224-229. https://doi.org/10.1016/j.conbuildmat.2014.09.059
  27. Zhang, J., Schere, G.W. (2011). Comparison of method for arresting hydration of cement, Cement and Concrete Research, 41, 1021-1036.
  28. Zhu, H., Zhang, Z., Zhu, Y., Tain, L. (2014). Durability of alkali-activated fly ash concrete: chloride penetration in pastes and mortars, Construction and Building Materials, 65, 51-59. https://doi.org/10.1016/j.conbuildmat.2014.04.110