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Abstract. In this paper, we consider biharmonic submanifolds of a quaternionic space

form. We give the necessary and sufficient conditions for a submanifold to be biharmonic

in a quaternionic space form, we study different particular cases for which we obtain some

non-existence results and curvature estimates.

1. Introduction

Let (Mm, g) and (Nn, h) be two Riemannian manifolds. A harmonic map is a
map φ : (Mm, g) → (Nn, h) that is a critical point of the energy functional

E(φ) =
1

2

∫
D

|dφ|2vM ,

for any compact domain D, where vM is the volume element [1, 6]. The Euler-
Lagrange equation of E(φ) is

τ(φ) = Tr(∇dφ) = 0,

where τ(φ) is the tension field of φ [1, 6]. The map φ is said to be biharmonic if it
is a critical point of the bienergy functional

E2(φ) =
1

2

∫
D

|τ(φ)|2vM ,

for any compact domain D. In [11], Jiang obtained the Euler-Lagrange equation of
E2(φ). This gives us

(1.1) τ2(φ) = Tr(∇φ∇φ −∇φ
∇)τ(φ)− Tr(RN (dφ, τ(φ))dφ) = 0,
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where τ2(φ) is the bitension field of φ and RN is the curvature tensor of N , ∇φ

denote the pull-back connection on φ−1TN . Harmonic maps are always biharmonic
maps by definition.

A submanifold in a Riemannian manifold is called a biharmonic submanifold
if the isometric immersion defining the submanifold is a biharmonic map, and a
biharmonic map is called a proper-biharmonic map if it is non-harmonic map. Also,
we will call proper-biharmonic submanifolds a biharmonic submanifols which is non-
harmonic [3, 7].

During the last decades, there are several results concerning the biharmonic sub-
manifolds in space forms like real space forms [4], complex space forms [7], Sasakian
space forms [8], generalized complex and Sasakian space forms [15], products of real
space forms [14]. Motivated by this works, in this note, we will focus our attention
on biharmonic submanifolds of quaternionic space form, we first give the necessary
and sufficient condition for submanifolds to be biharmonic. Then, we apply this
general result to many particular cases and obtain some non-existence results and
curvature estimates.

2. Preliminaries

We recall some facts on quaternionic Kähler manifolds and their submanifolds.
For a more detail we refer the reader, for example, to [2, 5, 10, 12, 13, 16].

An almost quaternionic structure on a smooth manifold N is a rank-three sub-
bundle σ ⊂ End(TN) such that a local basis J = (Jα)α=1,2,3 exists of sections of σ
satisfying

(2.1)

{
J2
α = −Id

J1J2 = −J2J1 = J3

where α = 1, 2, 3. The pair (N, σ) is called an almost quaternionic manifold.
Let (N, σ) be an almost quaternionic manifold. A metric tensor field g on N is

called adapted to σ if the following compatibility condition holds

(2.2) g(JαX, JαY ) = g(X,Y )

for all local basis (Jα)α=1,2,3 of σ and X,Y ∈ Γ(TN). The triple (N, σ, g) is
said to be an almost quaternionic Hermitian manifold. It is easy to see that any
almost quaternionic Hermitian manifold has dimension 4n. An almost quaternionic
Hermitian manifold (N, σ, g) is a quaternionic Kähler manifold if the Levi-Civita
connection verifies

∇Jα = ωγ ⊗ Jβ − ωβ ⊗ Jγ

for any cyclic permutation (α, β, γ) of (1, 2, 3), (ωα)α=1,2,3 being local 1-forms over
the open for which (Jα)α=1,2,3 is a local basis of σ.

A submanifold M of a quaternionic Kähler manifold N is called a quaternionic
submanifold (resp. totally real submanifold) if Jα(TM) ⊂ TM (resp. Jα(TM) ⊂
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TM⊥), α = 1, 2, 3, where TM and TM⊥ denote the tangent and normal bundle of
M , respectively.

Let (N, σ, g) be a quaternionic Kähler manifold and let X be a unit vector
tangent to (N, σ, g). Then the 4-plane spanned by {X,J1X, J2X, J3X}, denoted by
Q(X), is called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic
plane. The sectional curvature of a quaternionic plane is called a quaternionic sec-
tional curvature. A quaternionic Kähler manifold is a quaternionic space form if
its quaternionic sectional curvatures are equal to a constant, say 4c. We denote
by N4n(4c) the quaternionic space form of constant quaternionic sectional curva-
ture 4c. The Standard models of quaternionic space forms are the quaternionic
projective space HPn(4c)(c > 0), the quaternionic space Hn(c = 0) and the quater-
nionic hyperbolic space HHn(4c)(c < 0). The Riemannian curvature tensor R of a
quaternionic space form N4n(4c) is of the form

R(X,Y )Z = c
{
⟨Z, Y ⟩X − ⟨X,Z⟩Y +

3∑
α=1

[⟨Z, JαY ⟩JαX − ⟨Z, JαX⟩JαY

+2⟨X, JαY ⟩JαZ]
}

(2.3)

for X,Y, Z ∈ Γ(TN4n(4c)), where ⟨·, ·⟩ is the Riemannian metric on N4n(4c) and
(Jα)α=1,2,3 is a local basis of σ.

Now, let M be a submanifold of a quaternionic space form N4n(4c). Then for
any X ∈ Γ(TM), we write

JαX = jαX + kαX

where, jα : TM → TM and kα : TM → NM , here NM denote the normal bundle
of M . Similarly, for any ξ ∈ Γ(NM), we have

Jαξ = lαξ +mαξ

where, lα : NM → TM and kα : NM → NM . Since for any α ∈ {1, 2, 3}, Jα
satisfies (2.1) and (2.2). Then, we deduce that the operators jα, kα, lα,mα satisfy
the following relations

j2αX + lαkαX = −X,(2.4)

m2
αξ + kαlαξ = −ξ,(2.5)

jαlαξ + lαmαξ = 0,(2.6)

kαjαX +mαkαX = 0,(2.7)

g(kαX, ξ) = −g(X, lαξ),(2.8)

g(jαX,Y ) = −g(X, jαY ),(2.9)

g(mαξ, η) = −g(ξ,mαη).(2.10)

for all X,Y ∈ Γ(TM) and all ξ, η ∈ Γ(NM).
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3. Biharmonic Submanifolds of Quaternonic Space Forms

Let Mm be a submanifold of N4n(4c), φ : Mm → N4n(4c) be the canonical
inclusion. We shall denote by B, A, H, ∆ and ∆⊥ the second fundamental form, the
shape operator, the mean curvature vector field, the Laplacian and the Laplacian
on the normal bundle of Mm in N4n(4c), respectively.

Theorem 3.1. Let Mm be a submanifold of N4n(4c). Then Mm is biharmonic if
and only if

(3.1)


∆⊥H +Tr(B(·, AH(·)))−mcH + 3c

3∑
α=1

kαlαH = 0,

m
2 grad(|H|2) + 2Tr(A∇⊥

· H ·) + 3c
3∑

α=1
jαlαH = 0.

Proof. Choose a local geodesic orthonormal frame {ei}1≤i≤m at point p in Mm.
Then calculating at p, by the use of the Gauss and Weingarten formulas, we have

∆H = −
m∑
i=1

(∇φ
ei∇

φ
eiH) = −

m∑
i=1

(∇φ
ei(−AHei +∇⊥

eiH))

= −
m∑
i=1

(−∇eiAHei −B(ei, AHei)−A∇⊥
ei

Hei +∇⊥
ei∇

⊥
eiH)

= Tr(∇·AH ·)TrB(·, AH ·) + Tr(A∇⊥
· H ·) + ∆⊥H.(3.2)

Moreover,

Tr(∇·AH ·) =

m∑
i=1

∇eiAH(ei) =

m∑
i,j=1

∇ei(⟨AH(ei), ej⟩ej) =
m∑

i,j=1

(ei⟨AH(ei), ej⟩)ej

=
m∑

i,j=1

(ei⟨B(ej , ei), H⟩)ej =
m∑

i,j=1

(ei⟨∇φ
ejei,H⟩)ej

=
m∑

i,j=1

(⟨∇φ
ei∇

φ
ejei,H⟩+ ⟨∇φ

ejei,∇
φ
eiH⟩)ej

=

m∑
i,j=1

(⟨∇φ
ei∇

φ
ejei,H⟩+ ⟨B(ej , ei),∇⊥

eiH⟩)ej

=
m∑

i,j=1

(⟨∇φ
ei∇

φ
ejei,H⟩+ ⟨A∇⊥

ei
H(ei), ej⟩)ej

=

m∑
i,j=1

⟨∇φ
ei∇

φ
ejei,H⟩ej +

m∑
i=1

A∇⊥
ei

H(ei).(3.3)

Further, using (2.3) and (2.4) we have
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m∑
i,j=1

⟨∇φ
ei∇

φ
ejei, H⟩ej =

m∑
i,j=1

⟨RN4n(4c)(ei, ej)ei +∇φ
ej∇

φ
eiei +∇φ

[ei,ej ]
ei,H⟩ej

= c
m∑

i,j=1

3∑
α=1

{⟨⟨ei, ej⟩ei − ⟨ei, ei⟩ej + ⟨ei, Jαej⟩Jαei

−⟨ei, Jαei⟩Jαej + 2⟨ei, Jαej⟩Jαei,H⟩ej}

+
m∑

i,j=1

⟨∇φ
ejB(ei, ei) +∇φ

ej∇eiei,H⟩ej

= 3c
m∑

i,j=1

3∑
α=1

⟨Jα(⟨Jαej , ei⟩ei),H⟩ej +m
m∑
j=1

⟨∇φ
ejH,H⟩ej

+
m∑

i,j=1

⟨∇ej∇eiei +B(ej ,∇eiei),H⟩ej

= 3c
m∑

i,j=1

3∑
α=1

⟨j2αej ,H⟩ej +
m

2

m∑
j=1

ej(|H|2)ej

= 3c

m∑
i,j=1

3∑
α=1

⟨−ej − lαkαej ,H⟩ej +
m

2
grad(|H|2)

=
m

2
grad(|H|2).(3.4)

Reporting (3.4) into (3.3), we find

(3.5) Tr(∇·AH ·) = m

2
grad(|H|2) +

m∑
i=1

A∇⊥
ei

H(ei).

Replacing (3.5) into (3.2), we get the following formula

(3.6) ∆H =
m

2
grad(|H|2) + Tr(B(·, AH(·))) + 2Tr(A∇⊥

· H ·) + ∆⊥H.

Furthermore, we have

(3.7) τ(φ) = Tr(∇dφ) = mH.

From (1.1) and (3.7), we find

τ2(φ) = Tr(∇φ∇φ −∇φ
∇)τ(φ)− Tr(RN4n(4c)(dφ, τ(φ))dφ)

=
m∑
i=1

(∇φ
ei∇

φ
ei −∇φ

∇ei
ei
)mH −

m∑
i=1

RN4n(4c)(dφ(ei),mH)dφ(ei)

= −m{∆H +
m∑
i=1

RN4n(4c)(dφ(ei),H)dφ(ei)}(3.8)
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By (2.3), we get

m∑
i=1

RN4n(4c)(dφ(ei),H)dφ(ei) = −mcH + 3c

m∑
i=1

3∑
α=1

⟨lαH, ei⟩Jαei

= −mcH + 3c

3∑
α=1

JαlαH

= −mcH + 3c

3∑
α=1

jαlαH + 3c

3∑
α=1

kαlαH.(3.9)

Substituting (3.6) and (3.9) into (3.8), we obtain

τ2(φ) = −m{m
2
grad(|H|2) + Tr(B(·, AH(·))) + 2Tr(A∇⊥

· H ·) + ∆⊥H −mcH

+3c
3∑

α=1

jαlαH + 3c
3∑

α=1

kαlαH}.(3.10)

Obviously jαlαH is tangent and kαlαH is normal for all α ∈ {1, 2, 3}, comparing
the tangential and the normal parts, we get (3.1) and this completes the proof. 2

Corollary 3.2. Let N4n(4c) be a quaternionic space form and M4n−1 a real hy-
persurface of N4n(4c). Then M4n−1 is biharmonic if and only if

(3.11)

{
∆⊥H +Tr(B(·, AH(·)))− 4c(n+ 2)H = 0,
4n−1

2 grad(|H|2) + 2Tr(A∇⊥
· H ·) = 0.

Proof. As M4n−1 is a hypersurface, then Jα for all α ∈ {1, 2, 3} maps normal
vectors on tangent vectors, that is, mα = 0 for all α ∈ {1, 2, 3}. Hence, by relation
(2.5), we have kαlαH = −H and by relation (2.6), jαlαH = 0, which gives the
result by Theorem 3.1. 2

Corollary 3.3. Let N4n(4c) be a quaternionic space form and Mm a totally real
submanifold of N4n(4c). Then Mm is biharmonic if and only if

(3.12)

{
∆⊥H +Tr(B(·, AH(·)))− c(m+ 9)H = 0,
m
2 grad(|H|2) + 2Tr(A∇⊥

· H ·) = 0.

Proof. As Mm is a totally real submanifold, then jα = 0 for all α ∈ {1, 2, 3} and by
the use of (2.6) we deduce that mα = 0 for all α ∈ {1, 2, 3}. Moreover, by relation
(2.5), we have kαlαH = −H, which gives the proof by Theorem 3.1. 2

Remark 3.4. In [5], Chen proved that every quaternionic submanifold of a quater-
nionic Kähler manifold is totally geodesic. Then we deduce that every quater-
nionic submanifold of N4n(4c) is biharmonic, and there exists no proper-biharmonic
quaternionic submanifold in N4n(4c).
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Corollary 3.5. Let N4n(4c) be a quaternionic space form and Mm a totally real
submanifold of N4n(4c) with parallel mean curvature vector field. Then it is bihar-
monic if and only if

Tr(B(·, AH(·))) = c(m+ 9)H.

Proof. Since Mm has parallel mean curvature, we obtain immediately the result
from the Corollary 3.3. 2

Proposition 3.6. Let M4n−1 be a real hypersurface of N4n(4c) with non-zero
constant mean curvature. Then M4n−1 is proper-biharmonic if and only if

(3.13) |B|2 = 4c(n+ 2),

or equivalently, M4n−1 is proper-biharmonic if and only if the scalar curvature of
M4n−1 satisfies

ScalM
4n−1

= c
{
(4n− 1)(4n+ 7)− 4n− 17

}
+ (4n− 1)2|H|2.

Proof. Assume thatM4n−1 is a real hypersurface ofN4n(4c) with non-zero constant
mean curvature. Then, by Corollary 3.2, the first equation of (3.11) becomes

(3.14) Tr(B(·, AH(·))) = 4c(n+ 2)H.

As, for hypersurfaces, we have AH = HA, then we can write

(3.15) Tr(B(·, AH(·))) = H Tr(B(·, A(·))) = H|B|2.

Reporting (3.15) into (3.14), we get the identity (3.13).
For the second equivalence, by the use of the Gauss equation, we find

ScalM
4n−1

=
4n−1∑
i,j=1

⟨RN4n(4c)(ei, ej)ej , ei⟩+
4n−1∑
i,j=1

⟨B(ei, ei), B(ej , ej)⟩

−
4n−1∑
i,j=1

⟨B(ej , ei), B(ej , ei)⟩,(3.16)

where {ei}1≤i≤4n−1 is a local orthonormal frame of M4n−1. Therefore

(3.17) ScalM
4n−1

=
4n−1∑
i,j=1

⟨RN4n(4c)(ei, ej)ej , ei⟩+ (4n− 1)2|H|2 − |B|2.

Using (2.3) we have

4n−1∑
i,j=1

⟨RN4n(4c)(ei, ej)ej , ei⟩ = c
{
(4n− 1)2 − (4n− 1) + 9(4n− 1)− 9

}
= c

{
(4n− 1)(4n+ 7)− 9

}
.(3.18)
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Substituting (3.18) into (3.17), we get

(3.19) ScalM
4n−1

= c
{
(4n− 1)(4n+ 7)− 9

}
+ (4n− 1)2|H|2 − |B|2.

Hence, we deduce that M is proper-biharmonic if and only if |B|2 = 4c(n+2), that
is, if and only if

ScalM
4n−1

= c
{
(4n− 1)(4n+ 7)− 4n− 17

}
+ (4n− 1)2|H|2. 2

Remark 3.7. The first equivalence of the previous proposition has been proven in
[9] for the quaternionic projective space.

Corollary 3.8. There exists no biharmonic real hypersurface with constant mean
curvature in a quaternionic space form N4n(4c) of negative scalar curvature.

Proof. The assertion follows immediately from the first equivalence of Proposition
3.6. 2

Example 3.9. The geodesic sphere S4n−1(u) of radius u (0 < u < π
2 ) in the

quaternionic Euclidian space R4n(= Hn) is curvature adapted hypersurface of the
quaternionic projective space HPn(4), i.e., Jαξ is a direction of the principal cur-
vature for all α = 1, 2, 3, where ξ is the unit normal vector field along S4n−1 (see
[2],[9]). Furthemore it is proper-biharmonic hypersurface in HPn(4) if and only if

(cotu)2 = 2n+7±2
√
n2+4n+13

4n−1 . Indeed, the principal curvatures of S4n−1(u) are given
as follows (see [2],[9]),

(3.20)

{
λ1 = cotu (with multiplicity m1 = 4(n− 1)),

λ2 = 2 cot(2u) (with multiplicity m2 = 3).

The mean curvature H and the square of the second fundamental form |B|2 of
S4n−1(u) are given by (see [9])

H =
1

4n− 1
{4(n− 1)λ1 + 3λ2},

=
1

4n− 1
{4(n− 1) cotu+ 6 cot(2u)},

=
4(n− 1)

4n− 1
t+

3

4n− 1

(
t− 1

t

)
,

where t = cotu.

|B|2 = 4(n− 1)λ2
1 + 3λ2

2

= 4(n− 1)t2 + 3
(
t− 1

t

)2
= (4n− 1)t2 +

3

t2
− 6.
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On the other hand, using (3.19) we derive

ScalS
4n−1(u) = (4n− 1)(4n+ 7)− 9 + (4n− 1)2|H|2 − |B|2.

Then, by using the second equivalence of the Proposition 3.6, we have that S4n−1(u)
is proper biharmonic if and only if

(4n− 1)t2 +
3

t2
− 2(2n+ 7) = 0 ⇔ t2 =

2n+ 7± 2
√
n2 + 4n+ 13

4n− 1
,

which has always solutions. We set for example t =
√
3 for n = 2, then the geodesic

sphere S7(π6 ) is proper-biharmonic hypersurface in HP 2(4).

In the next proposition we give an estimate of the mean curvature for a bihar-
monic totally real submanifold of HPn(4).

Proposition 3.10. Let Mm a totally real submanifold of HPn(4) with non-zero
constant mean curvature.

(1) If Mm is proper-biharmonic, then 0 < |H|2 ≤ m+9
m .

(2) If |H|2 = m+9
m , then Mm is proper-biharmonic if and only if it is pseudo-

umbilical and ∇⊥H = 0.

Proof. We assume that Mm is a biharmonic totally real submanifold of HPn(4)
with non-zero constant mean curvature. By the first equation of (3.12), we have

(3.21) ∆⊥H +Tr(B(·, AH(·)))− (m+ 9)H = 0.

Then taking the scalar product of (3.21) with H, we find

(3.22) ⟨∆⊥H,H⟩+ ⟨Tr(B(·, AH(·))),H⟩ − (m+ 9)⟨H,H⟩ = 0.

Since |H| is a constant, we get

(3.23) ⟨∆⊥H,H⟩ = (m+ 9)|H|2 − |AH |2.

Using the Bochner formula, we have

(3.24) |∇⊥H|2 + |AH |2 = (m+ 9)|H|2.

By using Cauchy-Schwarz inequality, i.e., |AH |2 ≥ m|H|4 in the above equation, we
obtain

(3.25) (m+ 9)|H|2 ≥ m|H|4 + |∇⊥H|2 ≥ m|H|4.

So, we can write

0 < |H|2 ≤ m+ 9

m
,
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because |H| is a non-zero constant. This gives the proof of 1).
If |H|2 = m+9

m and Mm is biharmonic. From (3.25), we derive ∇⊥H = 0 and
from (3.24), we have

(3.26) |AH |2 =
(m+ 9)2

m
.

That is, Mm is pseudo-umbilical.
Conversely, if |H|2 = m+9

m and Mm is pseudo-umbilical with ∇⊥H = 0, then
we get immediately

∆⊥H +Tr(B(·, AH(·)))− (m+ 9)H = 0,

and
m

2
grad(|H|2) + 2Tr(A∇⊥

· H ·) = 0.

Therefore, by Corollary 3.3, Mm is proper-biharmonic. This completes the proof.
2
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