References
- Badshah, E., Naseer, A., Ashraf, M., Shah, F. and Akhtar, K. (2017), "Review of Blast Loading Models, Masonry Response, and Mitigation", Shock Vib., 2017, Article ID 6708341, 15.
- Biggs, J.M. and Biggs, J.M. (1964), Introduction to Structural Dynamics, McGraw-Hill College.
- Chipley, M. (2003), Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings: Providing Protection to People and Building, FEMA.
- El-Dakhakhni, W.W., Mekky, W.F. and Rezaei, S.C. (2009), "Validity of SDOF models for analyzing two-way reinforced concrete panels under blast loading", J. Perform. Constr. Facil., 24(4), 311-325. https://doi.org/10.1061/(ASCE)CF.1943-5509.000009
- Ellefsen, R. and Fordyce, D. (2012), "Urban terrain building types: Public releasable version", No. ARL-TR-4395A, Army Research Lab Aberdeen Proving Ground MD Survivability-Lethality Analysis Directorate.
- Feldgun, V.R., Yankelevsky, D.Z. and Karinski, Y.S. (2016), "A nonlinear SDOF model for blast response simulation of elastic thin rectangular plates", Int. J. Impact Eng., 88, 172-188. https://doi.org/10.1016/j.ijimpeng.2015.09.001
- Filler, W.S. (1976), "The influence of inert cases on air blast: An experimental study", Proceedings of the 6th Detonation Symposium, Coronado, California, USA.
- Fischer, K. and Haring, I. (2009), "SDOF response model parameters from dynamic blast loading experiments", Eng. Struct., 31(8), 1677-1686. https://doi.org/10.1016/j.engstruct.2009.02.040
- Fisher, E.M. (1953), "The effect of the steel case on the air blast from high explosives", Naval Ordnance Lab White Oak Md.
- Hou, X., Cao, S., Rong, Q. and Zheng, W. (2018), "A PI diagram approach for predicting failure modes of RPC one-way slabs subjected to blast loading", Int. J. Impact Eng., 120, 171-184. https://doi.org/10.1016/j.ijimpeng.2018.06.006
- Hyde, D.W. (1991), CONWEP: Conventional Weapons Effects Program, US Army Engineer Waterways Experiment Station. USA.
- Kingery, C.N. and Bulmash, G. (1984), "Airblast parameters from TNT spherical air burst and hemispherical surface burst", US Army Armament and Development Center, Ballistic Research Laboratory.
- Lee, S.J., Park, J.Y., Lee, Y.H. and Kim, H.S. (2017), "Experimental analysis on the criteria of the explosion damage for one-way RC slabs", J. Korea. Soc. Saf., 32(6), 68-74. https://doi.org/10.14346/JKOSOS.2017.32.6.68
- Li, J., Wu, C., Hao, H., Su, Y. and Li, Z.X. (2017), "A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads", Int. J. Impact Eng., 110, 242-254. https://doi.org/10.1016/j.ijimpeng.2017.01.016
- Li, Q.M. and Meng, H. (2002), "Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-of-freedom model", J. Eng. Mech., 128(1), 87-92. https://doi.org/10.1061/(asce)0733-9399(2002)128:1(87)
- Madias, J., Wright, M., Behr, G. and Valladares, V. (2017), "Analysis of international standards on concrete reinforcing steel bar", AISTech 2017 Proceedings.
- McDonald, B., Bornstein, H., Langdon, G.S., Curry, R., Daliri, A. and Orifici, A.C. (2018), "Experimental response of high strength steels to localised blast loading", Int. J. Impact Eng., 115, 106-119. https://doi.org/10.1016/j.ijimpeng.2018.01.012
- Mohammed, T.A. and Parvin, A. (2013), "Evaluating damage scale model of concrete materials using test data", Adv. Concrete Constr., 1(4), 289-304. https://doi.org/10.12989/acc2013.1.4.289
- Netherton, M.D. and Stewart, M.G. (2009), "The effects of explosive blast load variability on safety hazard and damage risks for monolithic window glazing", Int. J. Impact Eng., 36(12), 1346-1354. https://doi.org/10.1016/j.ijimpeng.2009.02.009
- PDC-TR-06-08 (2008), Single Degree of Freedom Structural Response Limits for Antiterrorism Design, US Army Corps of Engineers, USA.
- PDCTR-06 (2008), Methodology Manual for the Single-degree-of freedom Blast Effects Design Spreadsheets (SBEDS), 1.1-10.4. U.S. Army Corps of Engineers, USA.
- Rigby, S.E., Tyas, A. and Bennett, T. (2012), "Single-degree-of-freedom response of finite targets subjected to blast loading-the influence of clearing", Eng. Struct., 45, 396-404. https://doi.org/10.1016/j.engstruct.2012.06.034
- Russo, P. and Parisi, F. (2016), "Risk-targeted safety distance of reinforced concrete buildings from natural-gas transmission pipelines", Reliab. Eng. Syst. Saf., 148, 57-66. https://doi.org/10.1016/j.ress.2015.11.016
- Shentsov, V., Kim, W., Makarov, D. and Molkov, V. (2016), "Numerical simulations of experimental fireball and blast wave from a high-pressure tank rupture in a fire", Proc. of the Eighth International Seminar on Fire & Explosion Hazards (ISFEH8), Hefei, China.
- Shin, J. and Lee, K. (2018), "Blast performance evaluation of structural components under very near explosion", KSCE J. Civil Eng., 22(2), 777-784. https://doi.org/10.1007/s12205-017-1889-7
- Toy, A.T. and Sevim, B. (2017), "Numerically and empirically determination of blasting response of a RC retaining wall under TNT explosive", Adv. Concrete Constr., 5(5), 493-512. https://doi.org/10.12989/acc.2017.5.5.493
- UFC 3-340-02 (2008), Structures to Resist the Effects of Accidental Explosions, US DoD, Washington, DC, USA.
- Wu, Z., Zhang, P., Fan, L. and Liu, Q. (2019), "Debris characteristics and scattering pattern analysis of reinforced concrete slabs subjected to internal blast loads-a numerical study", Int. J. Impact Eng., 131,1-16 https://doi.org/10.1016/j.ijimpeng.2019.04.024
- Yuan, S., Hao, H., Zong, Z. and Li, J. (2017), "A study of RC bridge columns under contact explosion", Int. J. Impact Eng., 109, 378-390. https://doi.org/10.1016/j.ijimpeng.2017.07.017
Cited by
- Simple P-I diagram for structural components based on support rotation angle criteria vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.509