DOI QR코드

DOI QR Code

An overview of different retrofitting methods for arresting cracks in steel structures

  • Karamloo, Mohammad (Department of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Mazloom, Moosa (Department of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Ghasemi, Ali (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
  • Received : 2019.06.04
  • Accepted : 2019.10.31
  • Published : 2019.12.25

Abstract

Fatigue cracks are inevitable in circumstances in which the cyclic loading exists. Therefore, many of mechanical components are in a risk of being in exposure to fatigue cracks. On the other hand, renewing the facilities or infrastructures is not always possible. Therefore, retrofitting the structures by means of the available methods, such as crack arrest methods is logical and in some cases inevitable. In this regard, this paper considers three popular crack arrest methods (e.g., drilling stop-hole, steel welded patch, and carbon fiber reinforced (CFRP) patch), which have been compared by using extended finite element method (XFEM). In addition, effects in terms of the width and thickness of patches and the configuration of drilling stop holes have been evaluated. Test results indicated that among the considered methods, CFRP patches were the most effective means for arresting cracks. Besides, in the case of arresting by means of drilling stop holes, drilling two holes next to the crack-tip was more effective than blunting the crack-tip by drilling one hole. In other words, the results indicated that the use of symmetric welded metal patches could lead to a 21% increase in fatigue life, as compared to symmetric stop holes. Symmetric CFRP patches enhanced the fatigue life of cracked specimen up to 77%, as compared to drilling symmetric stop holes. In addition, in all cases, symmetric configurations were far better than asymmetric ones.

Keywords

Acknowledgement

Supported by : Shahid Rajaee Teacher Training University

References

  1. Afzali Naniz, O. and Mazloom, M. (2018), "Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete", J. Build. Eng., 20, 400-410. https://doi.org/10.1016/j.jobe.2018.08.014
  2. Aliabadi, M.H. and Lopez, J.L.F. (1996), Database of stress intensity factors, Computational Mechanics, Southampton, England.
  3. Aljabar, N.J., Zhao, X.L., Al-Mahaidi, R., Ghafoori, E., Motavalli, M. and Koay, Y.C. (2017), "Fatigue tests on UHM-CFRP strengthened steel plates with central inclined cracks under different damage levels", Compos. Struct., 160, 995-1006. https://doi.org/10.1016/j.compstruct.2016.10.122
  4. Aljabar, N.J., Zhao, X.L., Al-Mahaidi, R., Ghafoori, E., Motavalli, M. and Powers, N. (2016), "Effect of crack orientation on fatigue behavior of CFRP-strengthened steel plates", Compos. Struct., 152, 295-305. https://doi.org/10.1016/j.compstruct.2016.05.033
  5. Anderson, T.L. (2005), Fracture mechanics: fundamantals and applications, Taylor & Francis, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742.
  6. Ayatollahi, M.R., Razavi, S.M.J. and Chamani, H.R. (2014), "Evaluation of stress intensity factors of a center cracked curved plate in the presence of crack flank stop drill holes", Modares Mech. Eng., 14(9), 133-139.
  7. Ayatollahi, M.R., Razavi, S.M.J. and Chamani, H.R. (2014), "A numerical study on the effect of symmetric crack flank holes on fatigue life extension of a SENT specimen", Fatigue Fract Eng. M., 37(10), 1153-1164. https://doi.org/10.1111/ffe.12199
  8. Ayatollahi, M.R., Razavi, S.M.J., Sommitsch, C. and Moser, C. (2016), "Fatigue Life Extension by Crack Repair Using Double Stop-Hole Technique", Mater. Sci. Forum., 879, 3-8. https://doi.org/10.4028/www.scientific.net/msf.879.3
  9. Ayatollahi, M.R., Razavi, S.M.J. and Yahya, M.Y. (2015), "Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique", Eng. Fract. Mech., 145, 115-127. https://doi.org/10.1016/j.engfracmech.2015.03.027
  10. Baker, A.A. (1993), "Repair efficiency in fatigue-cracked aluminium components reinforced with boron/epoxy patches", Fatigue Fract Eng. M., 16(7), 753-765. https://doi.org/10.1111/j.1460-2695.1993.tb00117.x
  11. Baker, A.A. and Jones, R. (1988), Bonded Repair of Aircraft Structures, Martinus Nijhoff Publishers, Dordrecht.
  12. Bassetti, A., Nussbaumer, A. and colombi, P. (2000). "Repair of riveted bridge members damaged by fatigue using CFRP materials", Advanced FRP Materials for Civil Structures, Bologna, Italy.
  13. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Mech. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  14. Chen, H., Chen, W., Li, T. and Ure, J. (2011), "Effect of circular holes on the ratchet limit and crack tip plastic strain range in a centre cracked plate", Eng. Fract. Mech., 78(11), 2310-2324. https://doi.org/10.1016/j.engfracmech.2011.05.004
  15. Chung, K.H. and Yang, W.H. (2003), "A study on the fatigue crack growth behavior of thick aluminum panels repaired with a composite patch", Compos. Struct., 60(1), 1-7. https://doi.org/10.1016/S0263-8223(02)00338-0
  16. Colombi, P. (2005), "Plasticity induced fatigue crack growth retardation model for steel elements reinforced by composite patch", Theor. Appl. Fract. Mech., 43(1), 63-76. https://doi.org/10.1016/j.tafmec.2004.12.003
  17. Colombi, P., Bassetti, A. and Nussbaumer, A. (2003), "Analysis of cracked steel members reinforced by pre-stress composite patch", Fatigue Fract Eng. M., 26(1), 59-66. https://doi.org/10.1046/j.1460-2695.2003.00598.x
  18. Colombi, P., Bassetti, A. and Nussbaumer, A. (2003), "Crack growth induced delamination on steel members reinforced by prestressed composite patch", FATIGUE FRACT. ENG. M., 26(5), 429-438. https://doi.org/10.1046/j.1460-2695.2003.00642.x
  19. Colombi, P. and Fava, G. (2012), "Fatigue behaviour of tensile steel/CFRP joints", Compos. Struct., 94(8), 2407-2417. https://doi.org/10.1016/j.compstruct.2012.03.001
  20. Colombi, P. and Fava, G. (2015), "Experimental study on the fatigue behaviour of cracked steel beams repaired with CFRP plates", Eng. Fract. Mech., 145, 128-142. https://doi.org/10.1016/j.engfracmech.2015.04.009
  21. Colombi, P. and Fava, G. (2016), "Fatigue crack growth in steel beams strengthened by CFRP strips", Theor. Appl. Fract. Mech., 85, 173-182. https://doi.org/10.1016/j.tafmec.2016.01.007
  22. Colombi, P., Fava, G. and Sonzogni, L. (2015), "Fatigue crack growth in CFRP-strengthened steel plates", Compos. Part B-eng., 72, 87-96. https://doi.org/10.1016/j.compositesb.2014.11.036
  23. Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Mech. Eng., 48(12), 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
  24. Domazet, Z. (1996), "Comparison of fatigue crack retardation methods", Eng. Failure Anal., 3(2), 137-147. https://doi.org/10.1016/1350-6307(96)00006-4
  25. Emdad, R. and Al-Mahaidi, R. (2015), "Effect of prestressed CFRP patches on crack growth of centre-notched steel plates", Compos. Struct., 123, 109-122. https://doi.org/10.1016/j.compstruct.2014.12.007
  26. Fanni, M., Fouda, N., Shabara, M.A.N. and Awad, M. (2015), "New crack stop hole shape using structural optimizing technique", Ain Shams Eng. J., 6(3), 987-999. https://doi.org/10.1016/j.asej.2015.02.010
  27. Fekirini, H., Bachir Bouiadjra, B., Belhouari, M., Boutabout, B. and Serier, B. (2008), "Numerical analysis of the performances of bonded composite repair with two adhesive bands in aircraft structures", Compos. Struct., 82(1), 84-89. https://doi.org/10.1016/j.compstruct.2006.12.004
  28. Fu, Z.Q., Ji, B.H.., Xie, S.H. and Liu, T.J. (2017), "Crack stop holes in steel bridge decks: Drilling method and effects", J. Central South Univ., 24(10), 2372-2381. https://doi.org/10.1007/s11771-017-3649-8
  29. Gholipour, M. and Mazloom, M. (2018), "Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings", Adv. Comput. Design, 3(1), 17-34. https://doi.org/10.12989/ACD.2018.3.1.017
  30. Hansen, C.S., Jensen, P.H., Dyrelund, J. and Taljsten, B. (2009). "Crack propagation in ESE(T) specimens strengthened with CFRP sheets", Proceedings of the 4th International Conference on Advanced Composites in Construction, Edinburgh, U.K.
  31. Hosseini, A., Ghafoori, E., Motavalli, M., Nussbaumer, A. and Zhao, X.-L. (2017), "Mode I fatigue crack arrest in tensile steel members using prestressed CFRP plates", Compos. Struct., 178, 119-134. https://doi.org/10.1016/j.compstruct.2017.06.056
  32. Hu, L.L., Zhao, X.L. and Feng, P. (2016), "Fatigue Behavior of Cracked High-Strength Steel Plates Strengthened by CFRP Sheets", J. Compos. Constr., 20(6), 04016043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000698
  33. Jones, S.C. and Civjan, S.A. (2003), "Application of Fiber Reinforced Polymer Overlays to Extend Steel Fatigue Life", J. Compos. Constr., 7(4), 331-338. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(331)
  34. Kabir, M.Z. and Nazari, A. (2011), "Enhancing Ultimate Compressive Strength of Notch Embedded Steel Cylinders Using Overwrap CFRP Patch", ApCM, 19(3-4), 723-738.
  35. Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios", Comput. Concrete, 22(1), 39-51. https://doi.org/10.12989/CAC.2018.22.1.039
  36. Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete", Constr. Build. Mater, 123, 508-515. https://doi.org/10.1016/j.conbuildmat.2016.07.061
  37. Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete", Eng. Fract. Mech., 168 Part A, 227-241. https://doi.org/10.1016/j.engfracmech.2016.09.011
  38. Karamloo, M., Mazloom, M. and Payganeh, G. (2017), "Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: A stress-based approach", Materials Today Communications, 13, 36-45. https://doi.org/10.1016/j.mtcomm.2017.08.002
  39. Karamloo, M., Roudak, M.A. and Hosseinpour, H. (2019), "Size effect study on compressive strength of SCLC", Comput. Concrete, 23(6). 409-419.
  40. Karr, D.G., Douglas, A., Ferrari, C., Cao, T., Ong, K.T., Si, N., He, J., Baloglu, C., White, P. and Parra-Montesinos, G.J. (2016), "Fatigue testing of composite patches for ship plating fracture repair", Ships Offshore Struct., 12(6), 747-755.
  41. Kashfuddoja, M. and Ramji, M. (2014), "Design of optimum patch shape and size for bonded repair on damaged Carbon fibre reinforced polymer panels", Mater. Design (1980-2015), 54, 174-183. https://doi.org/10.1016/j.matdes.2013.08.043
  42. Kashfuddoja, M. and Ramji, M. (2014), "An experimental and numerical investigation of progressive damage analysis in bonded patch repaired CFRP laminates", JCoMa, 49(4), 439-456.
  43. Khalili, S.M.R., Ghadjar, R., Sadeghinia, M. and Mittal, R.K. (2009), "An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches", Compos. Struct., 89(2), 270-274. https://doi.org/10.1016/j.compstruct.2008.07.032
  44. Khalili, S.M.R., Mittal, R.K. and Kalibar, S.G. (2005), "A study of the mechanical properties of steel/aluminium/GRP laminates", Mater. Sci. Eng.: A, 412(1), 137-140. https://doi.org/10.1016/j.msea.2005.08.016
  45. Khoei, A.R. (2015), Extended Finite Element Method: Theory and Applications, John Wiley & Sons, United Kingdom.
  46. Klug, J., Maley, S. and Sun, C.T. (1999), "Characterization of Fatigue Behavior of Bonded Composite Repairs", JAir, 36(6), 1016-1022.
  47. Kumar, P., Shinde, P.S. and Bhoyar, G. (2018), "Fracture Toughness and Shear Strength of the Bonded Interface Between an Aluminium Alloy Skin and a FRP Patch", Journal of The Institution of Engineers (India): Series C.
  48. Lam, A.C.C., Yam, M.C.H., Cheng, J.J.R. and Kennedy, G.D. (2010), "Study of Stress Intensity Factor of a Cracked Steel Plate with a Single-Side CFRP Composite Patching", J. Compos. Constr., 14, 791-803. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000136
  49. Liu, H.B., Zhao, X.L. and Al-Mahaidi, R. (2005). "The effect of fatigue loading on bond strength of CFRP bonded steel plate joints", International Symposium on Bond Behavior of FRP in Structures, Hong Kong, China.
  50. Makabe, C., Murdani, A., Kuniyoshi, K., Irei, Y. and Saimoto, A. (2009), "Crack-growth arrest by redirecting crack growth by drilling stop holes and inserting pins into them", Eng. Failure Anal., 16(1), 475-483. https://doi.org/10.1016/j.engfailanal.2008.06.009
  51. Marazani, T., Madyira, D.M. and Akinlabi, E.T. (2017), "Repair of cracks in metals: A review", Procedia Manufacturing, 8, 673-679. https://doi.org/10.1016/j.promfg.2017.02.086
  52. Mazloom, M. (2008), "Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building", AIP Conf. Proc., 1020(1), 1767-1774.
  53. Mazloom, M. (2010), "Effect of shear wall cracking on soft storey phenomenon", Int. J. Civ. Eeng., 8(3), 276-285.
  54. Mazloom, M. (2013), "Incorporation of steel frames in masonry buildings for reduction of earthquake-induced life loss", KSCE J. Civil Eng., 17(4), 736-745. https://doi.org/10.1007/s12205-013-0085-7
  55. Mazloom, M., Allahabadi, A. and Karamloo, M. (2017), "Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC", Adv. Concrete Constr., 5(6), 587-611. https://doi.org/10.12989/ACC.2017.5.6.587
  56. Mazloom, M., Homayooni, S.M. and Miri, S.M. (2018), "Effect of rock flour type on rheology and strength of self-compacting lightweight concrete", Comput. Concrete, 21(2), 199-207. https://doi.org/10.12989/CAC.2018.21.2.199
  57. Mazloom, M. and Karamloo, M. (2016), Applied fracture mechanics (in persian), Shahid Rajaee Teacher Training University press, Lavizan, Tehran, Iran.
  58. Mazloom, M. and Karamloo, M. (2019). "Critical Crack-Tip Opening Displacement of SCLC", Singapore.
  59. Mazloom, M. and Mehrabian, A. (2006), "A new method for reducing earthquake casualties in poor performance masonry buildings", Int. J. Civ. Eng., 4(4), 330-341.
  60. Mazloom, M. and Miri, M.S. (2017), "Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete", Adv. Concrete Constr., 5(2), 87-99. https://doi.org/10.12989/acc.2017.5.2.087
  61. Mazloom, M., Saffari, A. and Mehrvand, M. (2015), "Compressive, shear and torsional strength of beams made of self-compacting concrete", Comput. Concrete, 15(6), 935-950. https://doi.org/10.12989/cac.2015.15.6.935
  62. Mazloom, M., Soltani, A., Karamloo, M., Hassanloo, A. and Ranjbar, A. (2018), "Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete", Adv. Mater. Res., 7(1), 45-72. https://doi.org/10.12989/AMR.2018.7.1.045
  63. Minguez, J. (1994), "Foreman's crack growth rate equation and the safety conditions of cracked structures", Eng. Fract. Mech., 48(5), 663-672. https://doi.org/10.1016/0013-7944(94)90174-0
  64. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  65. Nagaswamy, V., Pipkins, D.S. and Atluri, S.N. (1995), "An FEAM based methodology for analyzing composite patch repairs of metallic structures", Structure Integrity Aging Aircraft, ASME, 47, 273-300.
  66. Nateche, T., Hadj Meliani, M., Matvienko, Y.G. and Pluvinage, G. (2016), "Drilling Repair Index (DRI) based on two-parameter fracture mechanics for crack arrest holes", Eng. Failure Anal., 59, 99-110. https://doi.org/10.1016/j.engfailanal.2015.08.035
  67. Nazary, M. and Mazloom, M. (2016), "Optimization of shear walls with the combination of genetic algorithm and artificial neural networks", Indian J. Sci. Technol., 9(43).
  68. Okafor, A.C., Singh, N., Enemuoh, U.E. and Rao, S.V. (2005), "Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels", Compos. Struct., 71(2), 258-270. https://doi.org/10.1016/j.compstruct.2005.02.023
  69. Ouinas, D., Bouiadjra, B.B., Serier, B. and SaidBekkouche, M. (2007), "Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge", Compos. Struct., 80(4), 514-522. https://doi.org/10.1016/j.compstruct.2006.07.005
  70. Papanikos, P., Tserpes, K.I. and Pantelakis, S. (2007), "Initiation and progression of composite patch debonding in adhesively repaired cracked metallic sheets", Compos. Struct., 81(2), 303-311. https://doi.org/10.1016/j.compstruct.2006.08.022
  71. Pastor, M.-L., Balandraud, X., Grediac, M. and Robert, J.-L. (2008), "On the fatigue response of aluminium specimens reinforced with carbon-epoxy patches", Compos. Struct., 83(3), 237-246. https://doi.org/10.1016/j.compstruct.2007.10.038
  72. Pedersen, P. (2004), "Design study of hole positions and hole shapes for crack tip stress releasing", Struct.Multidiscip. O., 28(4), 243-251. https://doi.org/10.1007/s00158-004-0416-x
  73. Pereira, J.M., Ghasemnejad, H., Wen, J.X. and Tam, V.H.Y. (2011), "Blast response of cracked steel box structures repaired with carbon fibre-reinforced polymer composite patch", Mater. Des., 32(5), 3092-3098. https://doi.org/10.1016/j.matdes.2010.12.045
  74. Rao, V.V., Singh, R. and Malhotra, S.K. (1999), "Residual strength and fatigue life assessment of composite patch repaired specimens", Compos. Part B-Eng., 30(6), 621-627. https://doi.org/10.1016/S1359-8368(99)00024-4
  75. Ratwani, M.M. (1978), Analysis of cracked adhesively bonded laminated structures. Paper No. 78483R, AIAA/ASME, American Institute of Aeronautics and Astronautics special publications, 1290 Avenue of Americas, New York, NY 10019.
  76. Razavi, S.M.J., Ayatollahi, M.R., Sommitsch, C. and Moser, C. (2017), "Retardation of fatigue crack growth in high strength steel S690 using a modified stop-hole technique", Eng. Fract. Mech., 169, 226-237. https://doi.org/10.1016/j.engfracmech.2016.11.013
  77. Rhee, K.Y., Jang, S.H. and Park, S.J. (2004), "Fatigue characteristics of plasma treated aluminium repaired by graphite/epoxy composite patch", MSTec, 20(10), 1241-1244. https://doi.org/10.1179/026708304225022197
  78. Roberts, P.D. (1995), Crack growth retardation by carbon fibre composite patching: an application to steel pressure vessel repair, University of Alberta Canada.
  79. Rooke, D.P. and Cartwright, D.J. (1976), Compendium of stress intensity factors, H.M.S.O., Great Britain, London, Ministry of Defence.
  80. Roudak, M.A. and Karamloo, M. (2019), "Establishment of non-negative constraint method as a robust and efficient first-order reliability method", Appl. Math. Model., 68, 281-305. https://doi.org/10.1016/j.apm.2018.11.021
  81. Roudak, M.A., Shayanfar, M.A., Barkhordari, M.A. and Karamloo, M. (2017), "A new three-phase algorithm for computation of reliability index and its application in structural mechanics", Mech. Res. Commun., 85, 53-60. https://doi.org/10.1016/j.mechrescom.2017.08.008
  82. Sabelkin, V., Mall, S. and Avram, J.B. (2006), "Fatigue crack growth analysis of stiffened cracked panel repaired with bonded composite patch", Eng. Fract. Mech., 73(11), 1553-1567. https://doi.org/10.1016/j.engfracmech.2006.01.029
  83. Schubbe, J.J. and Mall, S. (1999), "Investigation of a cracked thick aluminum panel repaired with a bonded composite patch", Eng. Fract. Mech., 63(3), 305-323. https://doi.org/10.1016/S0013-7944(99)00032-6
  84. Schubbe, J.J. and Mall, S. (1999), "Modeling of cracked thick metallic structure with bonded composite patch repair using three-layer technique", Compos. Struct., 45(3), 185-193. https://doi.org/10.1016/S0263-8223(99)00025-2
  85. Sharp, P.K., Clayton, J.Q. and Clark, G. (1997), "Retardation and repair of fatigue cracks by adhesive infiltration", Fatigue Fract Eng. M., 20(4), 605-614. https://doi.org/10.1111/j.1460-2695.1997.tb00292.x
  86. Shin, C.S. and Cai, C.Q. (2000), "A model for evaluating the effect of fatigue crack repair by the infiltration method", Fatigue Fract Eng. M., 23(10), 835-845. https://doi.org/10.1046/j.1460-2695.2000.00347.x
  87. Shin, C.S., Wang, C.M. and Song, P.S. (1996), "Fatigue damage repair: a comparison of some possible methods", Int. J. Fatigue, 18(8), 535-546. https://doi.org/10.1016/S0142-1123(96)00029-1
  88. Shinde, P.S., Kumar, P., Singh, K.K., Tripathi, V.K., Aradhi, S. and Sarkar, P.K. (2015), "The role of yield stress on cracked thin panels of aluminum alloys repaired with a fRP patch", J. Adhesion, 93(5), 412-429.
  89. Shinde, P.S., Kumar, P., Singh, K.K., Tripathi, V.K. and Sarkar, P.K. (2015), "Experimental study of CFRP patches bonded on a cracked aluminum alloy panel", Compos. Interfaces, 22(4), 233-248. https://doi.org/10.1080/15685543.2015.1012426
  90. Shinde, P.S., Kumar, P. and Tripathi, V.K. (2018), "Dependence of repair strength on the size of FRP patch bonded to a cracked aluminum alloy panel", Thin-Walled Struct., 124, 303-311. https://doi.org/10.1016/j.tws.2017.12.022
  91. Silvestre, N., Young, B. and Camotim, D. (2008), "Non-linear behaviour and load-carrying capacity of CFRP-strengthened lipped channel steel columns", Eng. Struct., 30(10), 2613-2630. https://doi.org/10.1016/j.engstruct.2008.02.010
  92. Srilakshmi, R., Ramji, M. and Chinthapenta, V. (2015), "Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC", Eng. Fract. Mech., 134, 182-201. https://doi.org/10.1016/j.engfracmech.2014.12.012
  93. Stephens, R.I., Fatemi, A., Stephens, R.R. and Fuchs, H.O. (2000), Metal Fatigue in Engineering, John Wiley & Sons
  94. Stolarska, M., Chopp, D.L., Moes, N. and Belytschko, T. (2001), "Modelling crack growth by level sets in the extended finite element method", Int .J. Numer. Meh. Eng., 51, 943-960. https://doi.org/10.1002/nme.201
  95. Taljsten, B., Hansen, C.S. and Schmidt, J.W. (2009), "Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates", Constr. Build. Mater, 23(4), 1665-1677. https://doi.org/10.1016/j.conbuildmat.2008.08.001
  96. Tavakkolizadeh, M. and Saadatmanesh, H. (2003), "Fatigue Strength of Steel Girders Strengthened with Carbon Fiber Reinforced Polymer Patch", J. Struct. Eng., 129, 186-196. https://doi.org/10.1061/(asce)0733-9445(2003)129:2(186)
  97. Teng, J.G. and Hu, Y.M. (2007), "Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression", Constr. Build. Mater, 21(4), 827-838. https://doi.org/10.1016/j.conbuildmat.2006.06.016
  98. Waheed, A., Kowal, E. and Loo, T. (2004), Repair of bridge structural steel elements manual, Bridge Engineering Section, Technical Standards Branch, Alberta Transportation, Alberta, United States of America.
  99. Wang, Z.-Y., Wang, Q.-Y., Li, L. and Zhang, N. (2017), "Fatigue behaviour of CFRP strengthened open-hole steel plates", Thin-Walled Struct., 115, 176-187. https://doi.org/10.1016/j.tws.2017.02.015
  100. Wolf, E. (1970), "Fatigue crack closure under cyclic tension", Eng. Fract. Mech., 2(1), 37-45. https://doi.org/10.1016/0013-7944(70)90028-7
  101. Xiong, J.J. and Shenoi, R.A. (2008), "Integrated experimental screening of bonded composites patch repair schemes to notched aluminum-alloy panels based on static and fatigue strength concepts", Compos. Struct., 83(3), 266-272. https://doi.org/10.1016/j.compstruct.2007.04.019

Cited by

  1. Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.375