Fig. 1. Structure of ANFIS
Fig. 2. Process of ANFEP
Fig. 3. Error of ANFIS Structure (Training & Checking)
Fig. 4. RMSE by Eproch
Fig. 5. Function plots STDRR
Fig. 6. Function plots RMSSD
Fig. 7. Valence prediction using ANFEP
Table 1. ANFEP model performance
Table 2. Result of Emotion prediction model
References
- R. Riedl, F. D. Davis & A. R. Hevner. (2014). Towards a NeuroIS Research Methodology : Intensifying the Discussion on Methods , Tools , and Measurement. Journal of the Association for Information Systems, 15(Special Issue), i-xxxv.
- E. C. Nook, K. A. Lindquist & J. Zaki. (2015). A new look at emotion perception: Concepts speed and shape facial emotion recognition. Emotion, 15(5), 569-578. DOI : 10.1037/a0039166
- C. N. Anagnostopoulos, T. Iliou & I. Giannoukos. (2015). Features and classifiers for emotion recognition from speech: a survey from 2000 to 2011. Artificial Intelligence Review, 43(2), 155-177. DOI : 10.1007/s10462-012-9368-5
- M. Soleymani, S. Asghari-Esfeden, Y. Fu & M. Pantic. (2016). Analysis of EEG Signals and Facial Expressions for Continuous Emotion Detection. IEEE Transactions on Affective Computing, 7(1), 17-28. DOI : 10.1109/TAFFC.2015.2436926
- C. D. Katsis, N. S. Katertsidis & D. I. Fotiadis. (2011). An integrated system based on physiological signals for the assessment of affective states in patients with anxiety disorders. Biomedical Signal Processing and Control, 6(3), 261-268. DOI : 10.1016/j.bspc.2010.12.001
- F. Russo, N. Vempala & G. Sandstrom. (2013). Predicting musically induced emotions from physiological inputs: linear and neural network models. Frontiers in Psychology, 4, 468. DOI : 10.3389/fpsyg.2013.00468
- P. A. Kragel & K. S. Labar. (2013). Multivariate pattern classification reveals autonomic and experiential representations of discrete emotions. Emotion, 13(4), 681-690. DOI : 10.1037/a0031820
- J. Selvaraj, M. Murugappan, K. Wan & S. Yaacob. (2013). Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst. BioMedical Engineering OnLine, 12(1), 44. DOI : 10.1186/1475-925X-12-44
- G. Valenza, L. Citi, A. Lanata, E. P. Scilingo & R. Barbieri. (2014). Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics. Scientific Reports, 4, 4998. DOI : 10.1038/srep04998
- S. Yu & S. Chen. (2015). Emotion state identification based on heart rate variability and genetic algorithm. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 538-541. DOI : 10.1109/EMBC.2015.7318418
- R. Rakshit, V. R. Reddy & P. Deshpande. (2016). Emotion Detection and Recognition Using HRV Features Derived from Photoplethysmogram Signals. In Proceedings of the 2nd Workshop on Emotion Representations and Modelling for Companion Systems. DOI : 10.1145/3009960.3009962
- H. Guo, Y. Huang, C. Lin, J. Chien, K. Haraikawa & J. Shieh. (2016). Heart Rate Variability Signal Features for Emotion Recognition by Using Principal Component Analysis and Support Vectors Machine. In 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), 274-277. DOI : 10.1109/BIBE.2016.40
- A. Dimoka et al. (2012). On the Use of Neurophysiological Tools in IS Research: Developing a Research Agenda for NeuroIS. MIS Quarterly, 36(3), 679-702. DOI : 10.2307/41703475
- T. Teubner, M. Adam & R. Riordan. (2015). The Impact of Computerized Agents on Immediate Emotions, Overall Arousal and Bidding Behavior in Electronic Auctions. Journal of the Association for Information Systems, 16(10), 838-879. https://doi.org/10.17705/1jais.00412
- A. Hariharan & M. T. P. Adam. (2015). Blended Emotion Detection for Decision Support. IEEE Transactions on Human-Machine Systems, 45(4), 510-517. DOI : 10.1109/THMS.2015.2418231
- P. M. Leger, F. D. Davis, T. P. Cronan & J. Perret. (2014). Neurophysiological correlates of cognitive absorption in an enactive training context. Computers in Human Behavior, 34, 273-283. DOI : 10.1016/j.chb.2014.02.011
- Y. Zheng, X. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X. Zhou & Y. Zhang. (2014). Unobtrusive Sensing and Wearable Devices for Health Informatics. IEEE Transactions on Biomedical Engineering, 61(5), 1538-1554. DOI : 10.1109/TBME.2014.2309951
- L. Shen, M. Wang & R. Shen. (2009). Affective e-Learning: Using Emotional Data to Improve Learning in Pervasive Learning Environment. Journal of Educational Technology & Society, 12(2), 176-189.
- J. R. Jang. (1993). ANFIS: adaptive-network- based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. DOI : 10.1109/21.256541
- A. Haag, S. Goronzy, P. Schaich & J. Williams. (2004). Emotion Recognition Using Bio- sensors: First Steps towards an Automatic System. In E. Andre, L. Dybkjaer, W. Minker, & P. Heisterkamp (Eds.), Affective Dialogue Systems (pp. 36-48). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI : 10.1007/978-3-540-24842-2_4
- D. Kukolja, S. Popovic, M. Horvat, B. Kovac & K. Cosic. (2014). Comparative analysis of emotion estimation methods based on physiological measurements for real-time applications. International Journal of Human-Computer Studies, 72(10), 717-727. DOI : 10.1016/j.ijhcs.2014.05.006
- R. L. Mandryk & M. S. Atkins. (2007). A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. International Journal of Human- Computer Studies, 65(4), 329-347. DOI : 10.1016/j.ijhcs.2006.11.011
- C. D. Katsis, N. Katertsidis, G. Ganiatsas & D. I. Fotiadis. (2008). Toward Emotion Recognition in Car-Racing Drivers: A Biosignal Processing Approach. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 502-512. DOI : 10.1109/TSMCA.2008.918624
- N. Kamaruddin, A. Wahab & C. Quek. (2012). Cultural dependency analysis for understanding speech emotion. Expert Systems with Applications, 39(5), 5115-5133. DOI : 10.1016/j.eswa.2011.11.028
- M. Malkawi & O. Murad. (2013). Artificial neuro fuzzy logic system for detecting human emotions. Human-Centric Computing and Information Sciences, 3(1), 3. DOI : 10.1186/2192-1962-3-3
- G. Uchyigit & M. Y. Ma. (Eds.). (2008). Personalization Techniques and Recommender Systems. Series in Machine Perception and Artificial Intelligence. World Scientific. DOI : 10.1142/6788
- H. D. Critchley, S. Wiens, P. Rotshtein, A. Ohman & R. J. Dolan. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189. DOI : 10.1038/nn1176
- V. N. Salimpoor, M. Benovoy, K. Larcher, A. Dagher & R. J. Zatorre. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14, 257. DOI : 10.1038/nn.2726
- K. A. Cha, W. K. Hong, S. H. Park & H. S. Choi. (2017). Development of Emotion Inference Application with Location Information and User's Heartbeat Rate. Journal of the Korea Convergence Society, 8(8), 83-88. https://doi.org/10.15207/JKCS.2017.8.2.083