DOI QR코드

DOI QR Code

시맨틱 웹을 이용한 온톨로지 기반의 정보검색 시스템 설계 및 구현

Design and Implementation of Information Retrieval System Based on Ontology Using Semantic Web

  • 서우진 (강동대학교 컴퓨터정보과) ;
  • 유경택 (강동대학교 컴퓨터정보과)
  • 투고 : 2018.11.21
  • 심사 : 2019.01.20
  • 발행 : 2019.01.28

초록

본 논문에서는 시맨틱 검색 수행을 위해 검색 도메인에 알맞은 온톨로지를 이용, 구축하고 정보에 관한 검색, 변환, 통합, 공유가 가능한 검색 엔진을 구현하여 검색 시스템의 기반을 마련하는 것을 목적으로 하였다. 기존 방식에서 벗어나 온톨로지를 활용하여 계층 관계를 추론하고, 그 계층을 근거로 개체를 추론한 다음 속성을 추출하여 사용자가 원하는 자료와 관련있는 분야를 검색하는 것이다. 이러한 방식으로 정보를 검색할 수 있도록 정보검색 시스템을 '자격증'과 관련된 키워드를 입력하여 구현하였다. 구현된 시스템은 온톨로지에서 각 속성들의 의미와 관계를 정리하여 일반인 정보검색을 사용자가 빠르고 쉽게, 정확한 검색을 할 수 있도록 하였다. 또한, 구현 결과를 2개의 다른 검색엔진과 비교하였다. 비교한 검색엔진은 대표적인 검색엔진인 '네이버'와 '다음'이다. 시맨틱 웹을 이용한 검색을 수행하기 위해 검색 도메인에 맞는 온톨로지를 이용하여 구축한 본 연구의 검색 엔진은 상당히 우수한 결과를 보여주는 것으로 평가되었다. 그러나 검색 엔진의 정확성과 신뢰성을 높이고 좀 더 포괄적인 범주의 검색어 포함하기 위해서는 더욱 정형화된 온톨로지가 필요하다고 사료된다.

In this paper, the purpose of this paper is to lay the foundation for the search system by using and building an online search engine suitable for the search domain and enabling search, conversion, integration and sharing of information. It is to use the ontology to infer hierarchical relationships, deduce objects based on that layer, and extract attributes to search areas that are relevant to the data that the user wants. In order to search for information in this way, the information search system was implemented by entering key words related to 'qualifications'. The implemented system arranged the meaning and relationship of each attribute online so that the general public can search information quickly, easily, and accurately. In addition, the implementation results were compared with two different search engines. Comparable search engines are Naver and Daum, the two major search engines. The search engine of this study, which was built using an ontology suitable for the search domain to perform searches using the semantic web, was evaluated to have excellent results. However, it is thought that a more formalized online location is necessary to increase the accuracy and reliability of search engines and to include more comprehensive categories of search terms.

키워드

DJTJBT_2019_v17n1_209_f0001.png 이미지

Fig. 1. Architecture of Ontology Systems

DJTJBT_2019_v17n1_209_f0002.png 이미지

Fig. 2. Ontology Deployment Stage

DJTJBT_2019_v17n1_209_f0003.png 이미지

Fig. 3. Search project screen for search word' Certificate required for employment'

DJTJBT_2019_v17n1_209_f0004.png 이미지

Fig. 4. cmd screen for search word 'Certificate required for employment'

DJTJBT_2019_v17n1_209_f0005.png 이미지

Fig. 5. GUI execution screen for the search word' Certificate required for employment'

DJTJBT_2019_v17n1_209_f0006.png 이미지

Fig. 6. Search project screen for search word 'An information processing industry engineer'

DJTJBT_2019_v17n1_209_f0007.png 이미지

Fig. 7. cmd screen for search word 'An information processing industry engineer'

DJTJBT_2019_v17n1_209_f0008.png 이미지

Fig. 8. GUI execution screen for the search word' An information processing industry engineer'

DJTJBT_2019_v17n1_209_f0009.png 이미지

Fig. 9. Search project screen for search word 'FAR EAST UNIVERSITY'

DJTJBT_2019_v17n1_209_f0010.png 이미지

Fig. 10. cmd screen for search word 'FAR EAST UNIVERSITY'

DJTJBT_2019_v17n1_209_f0011.png 이미지

Fig. 11. GUI execution screen for the search word' FAR EAST UNIVERSITY'

Table 1. Important variable description

DJTJBT_2019_v17n1_209_t0001.png 이미지

Table 2. Used functions

DJTJBT_2019_v17n1_209_t0002.png 이미지

Table 3. Important variable description

DJTJBT_2019_v17n1_209_t0003.png 이미지

Table 4. Used functions

DJTJBT_2019_v17n1_209_t0004.png 이미지

Table 5. Implementation Results by Search Engine

DJTJBT_2019_v17n1_209_t0005.png 이미지

참고문헌

  1. Y. H. Yang, (2007). Design of Biological Curriculum based on Ontology Reasoning System and implementation, Graduate School of Korean National University of Education.
  2. J. K. Kim. (2007). Implementing a system integration project ontology and information retrieval system, Yonsei University Graduate School of Education.
  3. Y. K. Jung. (2004). Ontology-Based Information Retrieval System in a Semantic Web Environment, Jeju University Graduate School.
  4. H. S. Choi & J. H. Lim. (2006. 4). Methods and Examples of Ontology, Information science journal, 31-44.
  5. Y. Huh. (2005). How to Search Web Documents Based on Fuzzy Logic and Ontology, Graduate School of Chonbuk National University.
  6. H. S. Lee. (2003). A Study on the Design of Ontology-Based Oriental Medicine Knowledge Management System, Graduate School of Chung-Ang University.
  7. S. Y. Park. (2006). Korea's S/W Industry and Semantic, Information science journal, 24(4), 5-10.
  8. H. C. Kwon. (2006). Semantic Web and Ontology : Possibility and Limitations, Information science journal, 24(4), 11-16.
  9. S. Y. Huh & Y. K. Kim. (2007). A Study on the Semantic Search System Based on Ontology, Korea Information Processing Association, 263-466.
  10. D. L. Han. (2009). A Study on the Semantic Search System for the Efficiency of Knowledge Services, Graduate School of Chung-Ang University.
  11. R.. Guha, R. McCool & E. Miller. (2003). SemanticSearch, WWW 2003Conference, May20-24,ACM Press, Budapest, Hungary, 700-709.
  12. D. Bonino et al. (2004). Ontology Driven Semantic Search. WSEAS Transaction onInformationScienceandApplication, 1, 1597-1605.
  13. E. Makela ,e tal. (2006). Ontogator- A SemanticView-Based Search Engine ServicesforWebApplications, 5th International Semantic Web Conference 2006, ISWC2006, Athens, GA, USA, 4273(2006), 847-860.
  14. K. B. Kim. (2007). Online newspaper article search system based on semantic Web Ontology, Sogang University Graduate School of Information and Communication.
  15. H. C. Park. (2006). Implementing a system integration project ontology and information retrieval system, Yonsei University Graduate School of Education.