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UNIFORM MESH METHOD FOR A MAXWELL’S EQUATION

WITH DISCONTINUOUS COEFFICIENTS†

JI HYUN KIM

Abstract. In this paper, we introduce a uniform mesh method for a

Maxwell’s equation with discontinuous coefficients. We observe optimal
O(h) order for the electric field and O(h) order for the curl.
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1. Introduction

The purpose of this paper is to develop edge finite element approximations [2],
[3], [14], [17] to interface problem for a Maxwell’s equation[1], [7], [5]. The main
idea is to take a uniform grid and divide interface elements into subelements,
which fit into the interface and satisfy the maximum angle condition. In our
work we use edge elements, because it allows the sharp regularity of the solu-
tion and discontinuous electromagnetic properties. Numerical examples in two
dimensions illustrate the accuracy of our method. Our method can be extended
to time dependent Maxwell problems involving moving interfaces without losing
optimal rate of convergence.

Our paper is organized as follows. In Section 2, we introduce our model prob-
lem. Next, we present finite element methods for a Maxwell’s equation together
with some function spaces. In Section 4, numerical experiments demonstrate the
accuracy, robustness and reliability of our method.
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2. Stationary model equations

We consider the following stationary Maxwell’s equations in a dielectric medium:

∇× (µ−1∇×E)− κ2εE = f , in Ω, (1)

with the perfect conducting boundary condition

n×E = 0, on ∂Ω.

Here Ω ⊂ Rd(d = 2, 3) is a simply-connected Lipschitz polyhedral domain with
connected boundary which is occupied by the dielectric material. E and H are
the electric and magnetic fields. We assume that the permeability parameter
µ and the permittivity parameter ε of the medium are discontinuous across an
interface Γ ⊂ Ω, where ∂Ω is the boundary of a simply connected Lipschitz
polyhedral domain Ω− with Ω− ⊂ Ω and Ω+ = Ω \ Ω−. Ω+ is also assumed to
be simply-connected which, in turn, implies that Γ is connected. Without loss of
generality, we consider only the case with ε and µ being two piecewise constant
functions in the domain Ω, namely,{

ε− in Ω−,
ε+ in Ω+,

{
µ− in Ω−,
µ+ in Ω+,

(2)

and ε±, µ± are positive constants. It is known that the electric field E must
satisfy the following jump conditions across the interface :

[n×E] = 0,
[
µ−1∇×E

]
= 0,

[
n · κ2εE

]
= 0, (3)

where n is the unit outward normal to ∂Ω−. Throughout the paper, the jump
of any function U across the interface Γ is defined as

[U ] := U−|Γ − U+|Γ
with U? = U |Ω? , ? = +,−.

3. Finite element methods

3.1. Function spaces. We first define the space of vector functions with curl
in Hs(Ω)(s ≥ 0) by

Hs(curl; Ω) =
{
u ∈ (Hs(Ω))d| ∇ × u ∈ (Hs(Ω))d

}
(4)

with the graph norm

‖u‖curl,Ω =
(
‖u‖2s,Ω + ‖∇ × u‖2s,Ω

)1/2

. (5)

For the convenience of presentation, we denote the notation H(curl; Ω) by the
space H0(curl; Ω). The space H0(curl; Ω) is defined by density as follows:

H0(curl; Ω) = closure of (C∞0 (Ω))d in H(curl; Ω). (6)

Here, the notations ‖ · ‖s,Ω and | · |s,Ω denote the norm and the seminorm of the

Sobolev space (H2(Ω))d.
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Figure 1. Interface elements and subtriangles.

3.2. Meshes and finite-element space.

Definition 3.1. We say that a triangle T2 satisfies the maximum(minimum)
angle condition with a constant ω < π, or shortly MAC(ω)(mAC(ω)), if the
angles of T2 are less(greater) than or equal to ω, respectively. Let T3 be a
tetrahedron which the angles of each face of it are less(greater) than or equal
to ω, respectively. We say that a tetrahedron T3 satisfies MAC(ω)(mAC(ω)),
respectively.

We consider meshes Th that partition the domain into disjoint regular tetra-
hedral(triangular) elements {T}, such that Ω = ∪T∈ThT in R3(R2) and each
T satisfies mAC(ω), respectively. So, we can assume that every element T of
the Th is affine equivalent to either a reference tetrahedron(triangle). We call
an element T ∈ Th an interface element if the interface Γ passes through the
interior of T , otherwise we call T a non-interface element. We shall assume the
interface Γ meets the edges of an interface element T ∈ T I

h at no more than two
intersections. Now, we introduce some symbols:

T I
h = the set of all interface elements,

T N
h = the set of all non-interface elements

For any interface element T , we will divide an element T into severance subele-
ments and use subelements {T s} instead of the element T . Then, we define a
new meshes T s

h such that for any element T ∈ T s
h , T is a noninterface element

or a subelement of an interface element. We will state details below.

3.2.1. Two dimensional case. Consider a triangle ∆A1A2A3 in the Figure
1. We will sever each interface element into subtriangles. This work consists of
the following three steps.

(1) Divide a triangle ∆A1A2A3 into two subelements by an approximated
local linear interface B1B2.

(2) If all subelements are triangle(i.e. the interface B1B2 cut through only
one vertex of a triangle ∆A1A2A3), then we do not work any more.
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(3) If one of two subelements is rectangle (�B2B1A2A3), then we divide it
two subtriangles. In this case, compare two angles ∠A3B2B1, ∠B2B1A2

and divide the bigger side.

Then, we can easily check that each triangle T ∈ T s
h satisfies MAC(π − ω).

3.3. Local basis functions on an interface element. We consider the im-
mersed finite element simlar to those in [9], [8], [13], [15], adapted to a Maxwell’s
equation. We construct a piecewise linear function of the form

φ(X) =

{
φ+(X) = (a+ − c+y, b+ + c+x), X = (x, y) ∈ T+,
φ−(X) = (a− − c−y, b− + c−x), X = (x, y) ∈ T−,

(7)

satisfying

φ̄ · ti = Vi, i = 1, 2, 3, (8)

φ+ · t3(D) = φ− · t3(D), φ+ · t2(E) = φ− · t2(E), (9)

β+curlφ+|Γ = β−curlφ−Γ , (10)

where Vi, i = 1, 2, 3 are given values and nDE is the unit normal vector on the
line segment DE. This is a piecewise linear function on T that satisfies the
homogeneous jump conditions along DE.

Figure 2. A reference interface triangle.

Suppose that a typical reference interface element T has vertices atA(0, 0), B(1, 0), C(0, 1).
We assume that the interface meets with the edges at D(x0, 0) and E(0, y0)
where 0 < x0, y0 ≤ 1. Then the normal vector to the interface is nDE =

(y0, x0)/
√
x2

0 + y2
0 .

Theorem 3.2. Given an reference interface triangle, the piecewise linear func-
tion φ(x, y) defined by (7)-(10) is uniquely determined by three conditions

1

|ei|

∫
ei

φ · tids = Vi, i = 1, 2, 3.
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Proof. Let X = (x, y)T ∈ T . Since φ+ and φ− are linear functions, we have

φ(X) =

{
φ+(X) = (a+ − c+y, b+ + c+x), X = (x, y) ∈ T+,
φ−(X) = (a− − c−y, b− + c−x), X = (x, y) ∈ T− (11)

The condition (8) gives the following three equations:

1√
2

∫
e1

φ · t1 ds =

∫
e1

(−a+ + c+y + b+ + c+x)/2 = V1∫
e2

φ · t2 dy =

∫ 1

y0

(b+ + c+x) dy +

∫ y0

0

(b− + c−x) dy = V2∫
e3

φ · t3 dx =

∫ 1

x0

(a+ − c+y) dx+

∫ x0

0

(a− − c−y) dx = V3.

So

1√
2

(−a+ + c+ + b+) = V1

b+(1− y0) + b−y0 = V2

a+(1− x0) + a−x0 = V3.

Tangent continuity condition is

2β+c+ = 2β−c−.

From the continuity condition at E and D of φ · t2, and φ · t3 we have

(b+ + c+x)(E) = (b− + c−x)(E)→ b+ = b−,

(a+ − c+y)(D) = (a− − c−y)(D)→ a+ = a−.

Thus in this case(location of interface) the immersed basis is obtained just by
2β+c+ = 2β−c−, while a and b do not change. If β± = 1, then

φ1 =
√

2(−y, x),

φ2 = (y, 1− x),

φ3 = (1− y, x).

A tedious calculation shows that the determinant of the matrix is nonzero.
�

Remark 3.1. If φ̄e1 , φ̄e2 and φ̄e3 have the same value C, then the piecewise
linear function φ satisfying (8)-(10) reduces to a constant by uniqueness.

3.4. The variational formulation. Let Vh be the space of functions con-
structed above. For simplicity we write u for E. Then the finite element formu-
lation for Maxwell’s equation is∑

K

∫
K

curl uhcurl vhdx− κ2εu · vhdx =
∑
K

∫
K

f · vhdx,vh ∈ Vh. (12)
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4. Numerical experiments

In order to describe the interface, we consider the level-set function Φ(x) for
the interface Γ which is assumed to be smooth. Let Φ : Ω→ R be a continuous
function such that

Φ(x) =


< 0 x in Ω−,

= 0 x on Γ,

> 0 x in Ω+.

(13)

Example 4.1. In this example, we set κ = ε = 1. Let the domain be (−1, 1)×
(−1, 1) and triangularized by uniform triangle grids with hx = hy = 1/2n−1 for
n = 3, · · · , 8. The level-set function Φ(x), the permeability coefficients µ± and
the solution E are given as follows:

Φ(x) =
√
x2 + y2 − 0.5002,

µ =

 µ− = 1, µ+ = 1,
µ− = 1, µ+ = 1000,
µ− = 1000, µ+ = 1,

E = ((y2 − 1)(0.25001− x2 − y2)µ, (x2 − 1)(0.25001− x2 − y2)µ).

(14)
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Figure 3. Numerical solution.

Example 4.2. In this example, we set κ = 1. Let the domain be (−1, 1) ×
(−1, 1) and triangularized by uniform triangle grids with hx = hy = 1/2n−1 for
n = 3, · · · , 8. The level-set function Φ(x), the permeability coefficients µ±, the
permittivity ε± and the solution E are given as follows:

Φ(x) =
√
x2 + y2 − 0.5002,

µ =

 µ− = 1, µ+ = 1,
µ− = 1, µ+ = 10,
µ− = 1000, µ+ = 1,

ε =

{
ε− = 1, ε+ = 100,
ε− = 100, ε+ = 1,

E = ((y2 − 1)(0.25001− x2 − y2)µ, (x2 − 1)(0.25001− x2 − y2)µ).

(15)
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The results given table 1 and 2 strongly support our method that has the
optimal convergence order.
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