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UNIFORM MESH METHOD FOR A MAXWELL’S EQUATION
WITH DISCONTINUOUS COEFFICIENTS

JI HYUN KIM

ABSTRACT. In this paper, we introduce a uniform mesh method for a
Maxwell’s equation with discontinuous coefficients. We observe optimal
O(h) order for the electric field and O(h) order for the curl.
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1. Introduction

The purpose of this paper is to develop edge finite element approximations [2],
[3], [14], [17] to interface problem for a Maxwell’s equation[1], [7], [5]. The main
idea is to take a uniform grid and divide interface elements into subelements,
which fit into the interface and satisfy the maximum angle condition. In our
work we use edge elements, because it allows the sharp regularity of the solu-
tion and discontinuous electromagnetic properties. Numerical examples in two
dimensions illustrate the accuracy of our method. Our method can be extended
to time dependent Maxwell problems involving moving interfaces without losing
optimal rate of convergence.

Our paper is organized as follows. In Section 2, we introduce our model prob-
lem. Next, we present finite element methods for a Maxwell’s equation together
with some function spaces. In Section 4, numerical experiments demonstrate the
accuracy, robustness and reliability of our method.
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2. Stationary model equations
We consider the following stationary Maxwell’s equations in a dielectric medium:
Vx(u'VxE)-x*E=f, inQ, (1)
with the perfect conducting boundary condition
nx E=0, on 0.

Here Q C R%(d = 2,3) is a simply-connected Lipschitz polyhedral domain with
connected boundary which is occupied by the dielectric material. E and H are
the electric and magnetic fields. We assume that the permeability parameter
1 and the permittivity parameter € of the medium are discontinuous across an
interface I' C €, where 02 is the boundary of a simply connected Lipschitz
polyhedral domain Q= with Q= € Q and QF = Q\ Q. QF is also assumed to
be simply-connected which, in turn, implies that I is connected. Without loss of
generality, we consider only the case with € and p being two piecewise constant
functions in the domain 2, namely,

e~ in Q7 p~ o in Q7 @)
et in QT ut in QF,
and e*, u* are positive constants. It is known that the electric field E must
satisfy the following jump conditions across the interface :

mxE =0, [p'VxE]=0, [n-x%E]=0, (3)

where n is the unit outward normal to 92~. Throughout the paper, the jump
of any function U across the interface I is defined as

[U:=U"|r-U'|r
with U* = Ulg», * =+, —.

3. Finite element methods

3.1. Function spaces. We first define the space of vector functions with curl
in H5(2)(s > 0) by

H*(curl; Q) = {u € (H*(Q))Y V x u e (H*(Q))*} (4)
with the graph norm

) 5 \1/2
[ulleurne = (20 + 1V < ullg) (5)
For the convenience of presentation, we denote the notation H(curl;Q2) by the
space H'(curl; Q). The space Hg(curl; () is defined by density as follows:
Hy(curl; Q) = closure of (C3°(2))¢ in H(curl; Q). (6)
Here, the notations [| - ||, o and | - [ o denote the norm and the seminorm of the
Sobolev space (H?(2))¢.
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FI1GURE 1. Interface elements and subtriangles.

3.2. Meshes and finite-element space.

Definition 3.1. We say that a triangle T satisfies the mazimum(minimum)
angle condition with a constant w < m, or shortly M AC(w)(mAC(w)), if the
angles of Ty are less(greater) than or equal to w, respectively. Let T3 be a
tetrahedron which the angles of each face of it are less(greater) than or equal
to w, respectively. We say that a tetrahedron Tj satisfies M AC(w)(mAC(w)),
respectively.

We consider meshes 7T, that partition the domain into disjoint regular tetra-
hedral(triangular) elements {7}, such that Q = Ure7, T in R3(R?) and each
T satisfies mAC(w), respectively. So, we can assume that every element T of
the 7Ty, is affine equivalent to either a reference tetrahedron(triangle). We call
an element T' € T;, an interface element if the interface I' passes through the
interior of T', otherwise we call T a non-interface element. We shall assume the
interface I meets the edges of an interface element T € 7711 at no more than two
intersections. Now, we introduce some symbols:

Tl = the set of all interface elements,

TN = the set of all non-interface elements

For any interface element T', we will divide an element T into severance subele-
ments and use subelements {7°} instead of the element T. Then, we define a
new meshes 7,° such that for any element T € 7,°, T" is a noninterface element
or a subelement of an interface element. We will state details below.

3.2.1. Two dimensional case. Consider a triangle AA; As A3 in the Figure
1. We will sever each interface element into subtriangles. This work consists of
the following three steps.
(1) Divide a triangle AA;As A3 into two subelements by an approximated
local linear interface By Bs.
(2) If all subelements are triangle(i.e. the interface ByBs cut through only
one vertex of a triangle AA; Ay As), then we do not work any more.
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(3) If one of two subelements is rectangle ((0ByB1 A2 A3), then we divide it
two subtriangles. In this case, compare two angles ZA3 By By, /By B1As
and divide the bigger side.

Then, we can easily check that each triangle T' € 7, satisfies M AC(7m — w).

3.3. Local basis functions on an interface element. We consider the im-
mersed finite element simlar to those in [9], [8], [13], [15], adapted to a Maxwell’s
equation. We construct a piecewise linear function of the form

[ ¢ (X) = (at —cTy, bt +ctx), X =(x,y) €T,
o) = { ¢ (X)=(a" —cyb +czx), X=(zyel, (7)

satisfying
étl = ‘/iai:172a35 (8)
" -t3(D) = ¢ -t3(D), ¢ - ta(E) = ¢ - t2(E), 9)
Breurlgp®|r = B curlegr, (10)

where V;, i = 1,2,3 are given values and nyg is the unit normal vector on the
line segment DE. This is a piecewise linear function on 7' that satisfies the
homogeneous jump conditions along DFE.

FIGURE 2. A reference interface triangle.

Suppose that a typical reference interface element T has vertices at A(0,0), B(1,0), C(0,1).
We assume that the interface meets with the edges at D(x0,0) and E(0,yo)
where 0 < zg,y0 < 1. Then the normal vector to the interface is nyz =

(%0, %0)/ /23 + -

Theorem 3.2. Given an reference interface triangle, the piecewise linear func-
tion ¢(x,y) defined by (7)-(10) is uniquely determined by three conditions

1
E/d)tldszm, 121,2,3
(3 e;
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Proof. Let X = (2,y)” € T. Since ¢ and ¢~ are linear functions, we have

T (X) = (at —cty, bt +cta), X =(x,y) T,

P(X) = { ¢ (X)=(a" —cyb”+cz), X=(zy el D)

The condition (8) gives the following three equations:

1
ﬁ/(ﬂtlds = /(—a++c+y+b++c+x)/2:V1

€1

1 Yo
/¢"t2dy = /(b++c+rc>dy+/ (b” +cx)dy="Va
eg Yo

0
e3

1 o
/ (a™ —cty) dx—i—/ (a” —cy)de = V3.
T 0

0

So
i(—a+ +ct+bt) = 0
V2
br(1—yo)+byo = V2
at(l1—mzp)+a x9 = Va.
Tangent continuity condition is
28%ct =267 ¢,
From the continuity condition at F and D of ¢ - ty, and ¢ - t3 we have
bt +cta)(BE) = (b +cz)(E)—=bt=b",
(@ —cty)(D) = (a” —cy)(D) > at —a~.

Thus in this case(location of interface) the immersed basis is obtained just by
28%ct =267 ¢, while a and b do not change. If % = 1, then

¢1 = ﬁ(_ya Jf),

¢2 = (y7 1- .’L'),
¢3 = (]' - Y, LC)
A tedious calculation shows that the determinant of the matrix is nonzero.

O

Remark 3.1. If ¢, o (f)e2 and (}563 have the same value C', then the piecewise
linear function ¢ satisfying (8)-(10) reduces to a constant by uniqueness.

3.4. The variational formulation. Let V}; be the space of functions con-
structed above. For simplicity we write u for E. Then the finite element formu-
lation for Maxwell’s equation is

Z/ curlupcurl vide — k2eu - vide = Z/ f-vpde, vy, € Vy,. (12)
K VK K VK
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4. Numerical experiments

In order to describe the interface, we consider the level-set function ®(x) for
the interface I' which is assumed to be smooth. Let ® :  — R be a continuous
function such that

<0 X in Q7,
d(x)=¢ =0 xon T, (13)
>0 x in OF.

Example 4.1. In this example, we set k = ¢ = 1. Let the domain be (—1,1) x
(—=1,1) and triangularized by uniform triangle grids with h, = h, = 1/2"~! for
n =3,---,8. The level-set function ®(x), the permeability coefficients u* and
the solution E are given as follows:

B(x) = /22 + y2 — 0.5002,
po =1, pt =1,
p=q p=1 pt = 1000, (14)
p~ =1000, put=1,

E = ((y% —1)(0.25001 — 22 — y?)p, (22 — 1)(0.25001 — 22 — ) ).
TasLE 1. Ermor for Example 4.1
Nz = Ny |E — Egllgz Qrder  ||corlE —corlEg||pe  Order
cose () p= =1, p* =1 Ex8 [ 2302509 ; B.8795658 ]
18 = 18 01413853 0.98 4. 4088888 0.96
T 0.0TE440 099 22380840 099
Bd = 84 0054430 0.9% 1.1145724 09
128 » 128 00177235 100 0.GET28E3 099
56 « 256 0.DE3E 30 1.00 02786444 100
cose (B p= =1, pt = 1000 ExB 275.11081 - 1393 4354 .
6« 18 142 386802 0na7 BEE.108351 1.08
Z w32 TO.ET71508 1.00 23509026 148
B4 w84 35448012 0.9% 114.22412 1.04
12E = 128 LT.T25278 1.00 GE.388195 1.81
56 = 256 E.RAZIETE 1.00 2759488360 1.01
cose (o) = =1000, pt =1  Ew# 0. 2802509 . 0.8645673 ;
16 = 18 01413853 098 03424556 0.96
32 x 32 0070440 0.99 02224956 099
B4 = A4 003544 30 0.9 0.1114050 095
I2E = 128 00177235 1.00 DO5T223 099

56 w 256 D.DERE 3 ]:EII:' 00275856 1.00
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FI1GURE 3. Numerical solution.

po=1, pt =1,
H= po=1, /~L+ =10,

u =1000, pt =1,
L= 1, et =100,

e~ =100, et =1,

E = ((y® — 1)(0.25001 — 2% — y?)u, (2% — 1)(0.25001 — 22 — y?) ).
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Example 4.2. In this example, we set kK = 1. Let the domain be (—1,1) x
(—1,1) and triangularized by uniform triangle grids with h, = h, = 1/2"~1 for
n =3,---,8. The level-set function ®(x), the permeability coefficients p*, the
permittivity e* and the solution E are given as follows:

D(x) = /22 + y2 — 0.5002,

(15)
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The results given table 1 and 2 strongly support our method that has the
optimal convergence order.

TasLE 2. Emor for Example 4.3

Nex Ny ||[E—Eg|izz Order ||lcurlE —corlEs||ps  Order

cose (al} p- =1, pt =1 BxE 0.2814080 - 09177317 -
e~ =1, ¢t =100 18 = 18 0.1417586 0.93 04581779 1.00
32 x 32 0.073ST 0.99 02255071 102
A w6 0.03HETT 100 01119654 101
128 = 128 00177268 100 (OGEE049 100
56 = 256 0.D0EEAZ3 100 00278744 1.00
cose (82} p- =1, pt BuE 0.2R02509 - (AB458TS -
e =100, ¢t =1 168 = 18 0.1413803% 0.98 0.4424538 0.9
32 = 32 0.DTOE440 D99 0.2224038 0.99
84 64 0.D354420 099 (1114050 099
128 = 128 0.01772356 100 (OGET 0.99
58 = E56 0.DDEREZ0 1.00 00278636 1.00
cose (b1} p~ =1, pt =10 BxB 2.7911081 - 139034354 -
e =100, gt =1 16 = 18 14236892 097 65810831 1.08
32 w32 0.T0ET1S0 100 23609028 148
A w6 0.36-44891 0.99 11422412 1M
128 « 128 OATTERIT 100 056368619 101
58 = 256 0.DESE256 100 02798636 101
cose (B2} p~ =1, pt =10 Bx B 2.BE91306 - B ATHLALE -
e =100, et =1 18 = 18 1 4 2GR04 1.0 4 4GEBAAR 099
12 x 32 0.70<Ha 73 100 2 1200840 1.00
8 o« 84 03546185 Lo 11145734 1.00
128 = 138 01772509 100 (.56T2E33 1.00
58 = Eo6 0.DB56238 1.00 0.27B6444 1.00
cnse (cl) @~ =1000, gt =1 BuB 0.28140&80 - 03TTIT -
=100, gt =1 16 = 18 0.1417586 0.98 0.AGE1TTY 1.00
32 w 32 O.OTH2ST 099 02255071 102
B w6l 0.03HETT 100 Q.1119654 101
128 = 128 0.017TI5E 100 00568049 100
58 = 258 0.DNERA2E 100 Q0278744 1.00
cose (€2} po = 1000, pt =1 BB 0.2B0Z509 - 08645673 -
e =100, et =1 18 = 18 0.1413893 0.93 0.4424538 0.9
32w 32 0.0T0E440 0.99 02224938 0.99
a4 84 0.0354420 D99 0.1114050 0.99
128 = 1328 0.0177236 1.00 Q056723 0.99

Z58 = 208 0.008E820 100 00273638 1.00
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