J. Appl. Math. & Informatics Vol. **37**(2019), No. 1 - 2, pp. 65 - 71 https://doi.org/10.14317/jami.2019.065

SOME PROPERTIES RELATED TO FUZZY FUNCTIONS ON COMPLETE RESIDUATED LATTICES[†]

YONG CHAN KIM, JU-MOK OH*

ABSTRACT. In this paper we give some properties related to fuzzy functions on complete residuated lattices.

AMS Mathematics Subject Classification : 03E72, 06A15, 06F07, 54A05. *Key words and phrases* : complete residuated lattice, fuzzy function, partial fuzzy function, strong fuzzy function, perfect fuzzy function.

1. Introduction

A fuzzy function fuzzifies a concept of a function between two universes. This fuzzification has been researched by many authors (for examples, see [2, 3, 4, 5, 7, 8]). In this paper we give some properties related to fuzzy functions on complete residuated lattices.

Definition 1.1 ([1]). An algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a *complete residuated lattice* if

- (1) $(L, \wedge, \vee, 0, 1)$ is a complete lattice with the least element 0 and the greatest element 1;
- (2) $(L, \odot, 1)$ is a commutative monoid (*i.e.*, \odot is commutative, associated and $x \odot 1 = x$ for all $x \in L$);
- (3) $x \odot y \le z$ if and only if $x \le y \to z$ for all $x, y, z \in L$ (*i.e.*, \odot and \to form adjoint pair).

Throughout this paper we always assume that $L = (L, \land, \lor, \odot, \rightarrow, 0, 1)$ is a complete residuated lattice.

Definition 1.2 ([7]). Let $R: X \times X \to L$ be a fuzzy relation on a set X.

(1) R is reflexive if R(x, x) = 1 for all $x \in X$.

Received July 9, 2018. Revised October 25, 2018. Accepted October 29, 2018. *Corresponding author.

 $^{^\}dagger {\rm This}$ work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University

 $[\]bigodot$ 2019 Korean SIGCAM and KSCAM.

Yong Chan Kim, Ju-Mok Oh

- (2) R is symmetric if R(x, y) = R(y, x) for all $x, y \in X$.
- (3) R is transitive if $R(x, y) \odot R(y, z) \le R(x, z)$ for all $x, y, z \in X$.
- (4) R is an *indistinguishable operator on* X if R is reflexive, symmetric and transitive.

Definition 1.3 ([4]). Let *E* and *F* be two indistinguishable operators on *X* and *Y* respectively. A fuzzy relation $R: X \times Y \to L$ is extensional with respect to *E* and *F* if

$$R(x,y) \odot E(x,x') \odot F(y,y') \le R(x',y').$$

Definition 1.4 ([4]). Let *E* and *F* be two indistinguishable operators on *X* and *Y* respectively. Let $R: X \times Y \to L$ be extensional with respect to *E* and *F*.

- (1) R is a partial fuzzy function if $R(x, y) \odot R(x, y') \le F(y, y')$ for all $x \in X$ and $y, y' \in Y$.
- (2) R is fully defined if $\bigvee_{y \in Y} R(x, y) = 1$ for all $x \in X$.
- (3) R is a fuzzy function if R is a partial fuzzy function and is fully defined.
- (4) R is a perfect fuzzy function if (a) R is a partial fuzzy map and (b) for all $x \in X$, there exists $y \in Y$ such that R(x, y) = 1.

Definition 1.5 ([4]). Let *E* and *F* be two indistinguishable operators on *X* and *Y* respectively. A fuzzy relation $R: X \times Y \to L$ is a strong fuzzy function with respect to *E* and *F* if

- (1) for all $x \in X$, there exists $y \in Y$ such that R(x, y) = 1, and
- (2) $R(x,y) \odot R(x',y') \odot E(x,x') \le F(y,y')$ for all $x, x' \in X$ and $y, y' \in Y$.

Definition 1.6 ([4]). Let E and F be two indistinguishable operators on X and Y respectively. Let $f: X \to Y$ be a crisp function. f is extensional with respect to E and F if

 $E(x, x') \le F(f(x), f(x'))$ for all $x, x' \in X$.

Proposition 1.7 ([1]). Let $L = (L, \land, \lor, \odot, \rightarrow, 0, 1)$ be a complete residuated lattice. Then for all $x, y, y_i \in L$, the following hold.

- (1) $x \to x = 1$.
- (2) $1 \rightarrow x = x$.
- (3) $x \odot (x \to y) \le y$.
- (4) $x \odot \bigwedge_i y_i \leq \bigwedge_i (x \odot y_i).$
- (5) $y_1 \leq y_2$ implies $x \odot y_1 \leq x \odot y_2$ (isotonicity of \odot).

Definition 1.8 ([6]). Let $R : X \times Y \to L$ be a fuzzy relation from X to Y. Define $\sigma(R) : Y \times Y \to L$ by

$$\sigma(R)(y_1, y_2) = \bigwedge_{x \in X} [R(x, y_1) \to R(x, y_2)] \quad \text{for all } y_1, y_2 \in Y.$$

Define $\rho(R): X \times X \to L$ by

$$\rho(R)(x_1, x_2) = \bigwedge_{y \in Y} [R(x_2, y) \to R(x_1, y)] \quad \text{for all } x_1, x_2 \in X.$$

2. Results

Lemma 2.1. Let $R: X \times Y \to L$ be a fuzzy relation from a set X to a set Y.

- (1) For all $y_1 \in Y$, there exists $y_2 \in Y$ such that $\sigma(R)(y_1, y_2) = 1$.
- (2) For all $x_1 \in X$, there exists $x_2 \in X$ such that $\rho(R)(x_1, x_2) = 1$.
- (3) $\bigvee_{y_2 \in Y} \sigma(R)(y_1, y_2) = 1 \text{ for all } y_1 \in Y, \text{ and } \bigvee_{x_2 \in X} \rho(R)(x_1, x_2) = 1 \text{ for all } x_1 \in X.$

Proof. (1) Let $y_1 \in Y$. Then

$$\sigma(R)(y_1, y_1) = \bigwedge_{x \in X} [R(x, y_1) \to R(x, y_1)]$$
$$= \bigwedge_{x \in X} 1 \qquad \text{by Proposition 1.7(1)}$$
$$= 1$$

(2) Let
$$x_1 \in X$$
. Then

$$\rho(R)(x_1, x_1) = \bigwedge_{y \in Y} [R(x_1, y) \to R(x_1, y)]$$
$$= \bigwedge_{y \in Y} 1 \qquad \text{by Proposition 1.7(1)}$$
$$= 1$$

(3) It follows from (1) and (2).

Lemma 2.2. Let $R : X \times X \to L$ be a fuzzy relation from X to X. If R is reflexive, then $\sigma(R) \leq R$ and $\rho(R) \leq R$.

Proof. Note that for all $y_1, y_2 \in X$, we have

$$\sigma(R)(y_1, y_2) = \bigwedge_{x \in X} [R(x, y_1) \to R(x, y_2)]$$

$$\leq R(y_1, y_1) \to R(y_1, y_2)$$

$$= 1 \to R(y_1, y_2) \text{ since } R \text{ is reflexive}$$

$$= R(y_1, y_2) \text{ by Proposition 1.7(2).}$$

Hence $\sigma(R) \leq R$.

Similarly, for all $x_1, x_2 \in X$, we have

$$\begin{split} \rho(R)(x_1, x_2) &= \bigwedge_{y \in X} [R(x_2, y) \to R(x_1, y) \\ &\leq R(x_2, x_2) \to R(x_1, x_2) \\ &= 1 \to R(x_1, x_2) \text{ since } R \text{ is reflexive} \\ &= R(x_1, x_2). \end{split}$$

Hence $\rho(R) \leq R$.

Theorem 2.3. Let E be an indistinguishable operator on X. Let $R: X \times X \to L$ be a fuzzy relation such that

$$R(x,y) \odot R(x',y') \odot E(x,x') \le E(y,y') \text{ for all } x, x', y, y' \in X.$$
(1)

If R is reflexible, then $\sigma(R)$ and $\rho(R)$ are strong fuzzy functions with respect to E and E.

Proof. By Lemma 2.1 (1) and (2), both of $\sigma(R)$ and $\rho(R)$ satisfy the condition (1) in Definition 1.5.

Let $y_1, y'_1, y_2, y'_2 \in X$. Then

$$\begin{aligned} \sigma(R)(y_1, y_2) \odot \sigma(R)(y'_1, y'_2) \odot E(y_1, y'_1) \\ &\leq R(y_1, y_2) \odot R(y'_1, y'_2) \odot E(y_1, y'_1) \\ &\leq E(y_2, y'_2) \qquad \text{by Eq. (1).} \end{aligned}$$

Therefore $\sigma(R)$ is a strong fuzzy function with respect to E and E. Let $x_1, x_2, x'_1, x'_2 \in X$. Then

$$\begin{aligned}
\rho(R)(x_1, x_2) \odot \rho(R)(x'_1, x'_2) \odot E(x_1, x'_1) \\
&\leq R(x_1, x_2) \odot R(x'_1, x'_2) \odot E(x_1, x'_1) \quad \text{by Lemma 2.2} \\
&\leq E(x_2, x'_2) \quad \text{by Eq. (1).}
\end{aligned}$$

Therefore $\rho(R)$ is a strong fuzzy function with respect to E and E.

By Theorem 2.3, we have the following.

Corollary 2.4. Let E be an indistinguishable operator on X. Let $R: X \times X \to L$ be a strong fuzzy function with respect to E and E. If R is reflexible, then $\sigma(R)$ and $\rho(R)$ are strong fuzzy functions with respect to E and E.

Theorem 2.5. Let E be an indistinguishable operator on X. Let $R: X \times X \rightarrow L$ be extensional with respect to E and E. Then both of $\sigma(R)$ and $\rho(R)$ are extensional with respect to E and E.

Proof. Let $y_1, y_1', y_2, y_2' \in X$. We must show that

$$\sigma(R)(y_1, y_2) \odot E(y_1, y_1') \odot E(y_2, y_2') \le \sigma(R)(y_1', y_2').$$

Since

$$\begin{aligned} \sigma(R)(y_1, y_2) & \odot E(y_1, y_1') \odot E(y_2, y_2') \\ &= \bigwedge_{x \in X} \left[R(x, y_1) \to R(x, y_2) \right] \odot E(y_1, y_1') \odot E(y_2, y_2') \\ &\leq \bigwedge_{x \in X} \left\{ \left[R(x, y_1) \to R(x, y_2) \right] \odot E(y_1, y_1') \odot E(y_2, y_2') \right\} \text{ by Proposition 1.7(4)}. \end{aligned}$$

it is enough to show that for all $x \in X$,

$$[R(x,y_1) \to R(x,y_2)] \odot E(y_1,y_1') \odot E(y_2,y_2') \le R(x,y_1') \to R(x,y_2').$$
(2)

68

Note that Eq. (2) holds if and only if

$$[R(x,y_1) \to R(x,y_2)] \odot R(x,y_1') \odot E(y_1,y_1') \odot E(y_2,y_2') \le R(x,y_2').$$
(3)

Note that

$$\begin{split} & [R(x,y_1) \to R(x,y_2)] \odot R(x,y_1') \odot E(y_1,y_1') \odot E(y_2,y_2') \\ &= [R(x,y_1) \to R(x,y_2)] \odot R(x,y_1') \odot E(x,x) \odot E(y_1',y_1) \odot E(y_2,y_2') \\ &\leq R(x,y_1) \odot [R(x,y_1) \to R(x,y_2)] \odot E(y_2,y_2') \qquad \text{since } R \text{ is extensional} \\ &\leq R(x,y_2) \odot E(y_2,y_2') \qquad \text{by Propostion 1.7(3)} \\ &= R(x,y_2) \odot E(x,x) \odot E(y_2,y_2') \\ &\leq R(x,y_2') \qquad \text{since } R \text{ is extensional.} \end{split}$$

Therefore $\sigma(R)$ is extensional with respect to E and E. Let $x_1, x'_1, x_2, x'_2 \in X$. We must show that

$$\rho(R)(x_1, x_2) \odot E(x_1, x_1') \odot E(x_2, x_2') \le \rho(R)(x_1', x_2').$$

Since

$$\rho(R)(x_1, x_2) \odot E(x_1, x_1') \odot E(x_2, x_2')
= \bigwedge_{y \in X} [R(x_2, y) \to R(x_1, y)] \odot E(x_1, x_1') \odot E(x_2, x_2')
\leq \bigwedge_{y \in X} \{ [R(x_2, y) \to R(x_1, y)] \odot E(x_1, x_1') \odot E(x_2, x_2') \}$$
by Proposition 1.7(4),

it is enough to show that for any $y \in X$,

$$[R(x_2, y) \to R(x_1, y)] \odot E(x_1, x_1') \odot E(x_2, x_2') \le R(x_2', y) \to R(x_1', y).$$
(4)

Note that Eq. (4) holds if and only if

$$[R(x_2, y) \to R(x_1, y)] \odot R(x'_2, y) \odot E(x_1, x'_1) \odot E(x_2, x'_2) \le R(x'_1, y).$$

Note that

$$\begin{split} R(x_2, y) &\to R(x_1, y)] \odot R(x'_2, y) \odot E(x_1, x'_1) \odot E(x_2, x'_2) \\ &= [R(x_2, y) \to R(x_1, y)] \odot R(x'_2, y) \odot E(x'_2, x_2) \odot E(y, y) \odot E(x_1, x'_1) \\ &\leq [R(x_2, y) \to R(x_1, y)] \odot R(x_2, y) \odot E(x_1, x'_1) \quad \text{since } R \text{ is extensional} \\ &\leq R(x_1, y) \odot E(x_1, x'_1) \quad \text{by Proposition 1.7(4)} \\ &= R(x_1, y) \odot E(x_1, x'_1) \odot E(y, y) \\ &\leq R(x'_1, y) \quad \text{since } R \text{ is extensional.} \end{split}$$

Therefore $\rho(R)$ is extensional with respect to E and E.

Theorem 2.6. Let $R : X \times X \to L$ be a partial fuzzy function where E is an indistinguishable operator on X. If R is reflexive, then both of $\sigma(R)$ and $\rho(R)$ are partial fuzzy functions.

Proof. We already know by Theorem 2.5 that both of $\sigma(R)$ and $\rho(R)$ are extensional with respect to E and E.

Let $y_1, y_2, y'_2 \in X$. We must show that

$$\sigma(R)(y_1, y_2) \odot \sigma(R)(y_1, y_2') \le E(y_2, y_2')$$

Note that

$$\begin{split} \sigma(R)(y_1,y_2) \odot \sigma(R)(y_1,y_2') &\leq R(y_1,y_2) \odot R(y_1,y_2') \qquad \text{by Lemma 2.2} \\ &\leq E(y_2,y_2') \qquad \text{since R is a partial fuzzy function.} \end{split}$$

Hence $\sigma(R)$ is a partial fuzzy function.

Let $x_1, x_2, x'_2 \in X$. We must show that

$$\rho(R)(x_1, x_2) \odot \sigma(R)(x_1, x_2') \le E(x_2, x_2').$$

Note that

$$\begin{split} \rho(R)(x_1, x_2) \odot \rho(R)(x_1, x_2') &\leq R(x_1, x_2) \odot R(x_1, x_2') \qquad \text{by Lemma 2.2} \\ &\leq E(x_2, x_2') \qquad \text{since } R \text{ is a partial fuzzy function.} \end{split}$$

Hence $\rho(R)$ is a partial fuzzy function.

Theorem 2.7. If $R: X \times X \to L$ is fully defined where E is an indistinguishable operator on X, then $\sigma(R)$ and $\rho(R)$ is fully defined.

Proof. Since R is fully defined, R is extensional with respect to E and E, and so by Theorem 2.5, both of $\sigma(R)$ and $\rho(R)$ are extensional with respect to E and E. Now, by Lemma 2.1(3), both of $\sigma(R)$ and $\rho(R)$ are fully defined.

By Lemma 2.1 (1), (2), Theorems 2.5 and 2.6, we have the following.

Theorem 2.8. Let $R : X \times X \to L$ be a partial fuzzy function where E is an indistinguishable operator on X. If R is reflexive, then both of $\sigma(R)$ and $\rho(R)$ are perfect fuzzy functions.

As an immediate consequence of Theorem 2.8, we have the following.

Corollary 2.9. If $R: X \times X \to L$ be a reflexive perfect fuzzy function where E is an indistinguishable operator on X, then both of $\sigma(R)$ and $\rho(R)$ are perfect fuzzy functions.

By Theorems 2.6 and 2.7, we have the following.

Theorem 2.10. Let $R: X \times X \to L$ be a partial fuzzy function where E is an indistinguishable operator on X. If R is reflexive, then both of $\sigma(R)$ and $\rho(R)$ are fuzzy functions.

As an immediate consequence of Theorem 2.10, we have the following.

Corollary 2.11. If $R: X \times X \to L$ be a reflexive fuzzy function where E is an indistinguishable operator on X, then both of $\sigma(R)$ and $\rho(R)$ are fuzzy functions.

References

- 1. R. Bělohlávek, *Fuzzy Relational Systems, Foundations and Principles*, Kluwer Academic, Plenum Publishers, New York, 2002.
- M. Demirci, Fuzzy functions and their applications, J. Math. Anal. Appl. 252 (2000), 495-517.
- 3. M. Demirci, *Fuzzy functions and their fundamental properties*, Fuzzy Sets and Systems **106** (1999), 239-246.
- M. Demirci and J. Recasens, Fuzzy groups, fuzzy functions and fuzzy equivalence relations, Fuzzy Sets and Systems 144 (2004), 441-458.
- 5. F. Klawonn, *Fuzzy points, fuzzy relations and fuzzy functions* in "Discovering World with Fuzzy Logic", Physica-Verlag, Heidelberg, 2000.
- H. Lai and D. Zhang, Good fuzzy preorders on fuzzy power structures, Arch. Math. Log. 49 (2010), 469-489.
- 7. J. Recasens, Indistinguishability operators, Springer-Verlag, Berlin, 2010.
- L. Valverde, On the structure of F-indistinguishability operators, Fuzzy sets and Systems 17 (1985), 313-328.

Yong Chan Kim received M.Sc. and Ph.D. from Yonsei University. He is currently a professor at Gangneung-Wonju National University since 1991. His research interests are fuzzy topology and rough set theory.

Department of Mathematics, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.

e-mail: yck@gwnu.ac.kr

Ju-Mok Oh received M.Sc. and Ph.D. from Pohang University of Science and Technology. He is currently an associate professor at Gangneung-Wonju National University since 2012. His research interests are fuzzy theory, graph theory, combinatorics and group theory.

Department of Mathematics, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.

e-mail: jumokoh@gwnu.ac.kr