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1. Introduction

A fuzzy function fuzzifies a concept of a function between two universes. This
fuzzification has been researched by many authors (for examples, see [2, 3, 4,
5, 7, 8]). In this paper we give some properties related to fuzzy functions on
complete residuated lattices.

Definition 1.1 ([1]). An algebra (L,∧,∨,�,→, 0, 1) is called a complete resid-
uated lattice if

(1) (L,∧,∨, 0, 1) is a complete lattice with the least element 0 and the great-
est element 1;

(2) (L,�, 1) is a commutative monoid (i.e., � is commutative, associated
and x� 1 = x for all x ∈ L);

(3) x� y ≤ z if and only if x ≤ y → z for all x, y, z ∈ L (i.e., � and → form
adjoint pair).

Throughout this paper we always assume that L = (L,∧,∨,�,→, 0, 1) is a
complete residuated lattice.

Definition 1.2 ([7]). Let R : X ×X → L be a fuzzy relation on a set X.

(1) R is reflexive if R(x, x) = 1 for all x ∈ X.

Received July 9, 2018. Revised October 25, 2018. Accepted October 29, 2018. ∗Corresponding

author.
†This work was supported by the Research Institute of Natural Science of Gangneung-Wonju

National University

c© 2019 Korean SIGCAM and KSCAM.

65



66 Yong Chan Kim, Ju-Mok Oh

(2) R is symmetric if R(x, y) = R(y, x) for all x, y ∈ X.
(3) R is transitive if R(x, y)�R(y, z) ≤ R(x, z) for all x, y, z ∈ X.
(4) R is an indistinguishable operator on X if R is reflexive, symmetric and

transitive.

Definition 1.3 ([4]). Let E and F be two indistinguishable operators on X and
Y respectively. A fuzzy relation R : X × Y → L is extensional with respect to E
and F if

R(x, y)� E(x, x′)� F (y, y′) ≤ R(x′, y′).

Definition 1.4 ([4]). Let E and F be two indistinguishable operators on X and
Y respectively. Let R : X × Y → L be extensional with respect to E and F .

(1) R is a partial fuzzy function if R(x, y)�R(x, y′) ≤ F (y, y′) for all x ∈ X
and y, y′ ∈ Y .

(2) R is fully defined if
∨

y∈Y R(x, y) = 1 for all x ∈ X.

(3) R is a fuzzy function if R is a partial fuzzy function and is fully defined.
(4) R is a perfect fuzzy function if (a) R is a partial fuzzy map and (b) for

all x ∈ X, there exists y ∈ Y such that R(x, y) = 1.

Definition 1.5 ([4]). Let E and F be two indistinguishable operators on X and
Y respectively. A fuzzy relation R : X × Y → L is a strong fuzzy function with
respect to E and F if

(1) for all x ∈ X, there exists y ∈ Y such that R(x, y) = 1, and
(2) R(x, y)�R(x′, y′)� E(x, x′) ≤ F (y, y′) for all x, x′ ∈ X and y, y′ ∈ Y .

Definition 1.6 ([4]). Let E and F be two indistinguishable operators on X and
Y respectively. Let f : X → Y be a crisp function. f is extensional with respect
to E and F if

E(x, x′) ≤ F (f(x), f(x′)) for all x, x′ ∈ X.

Proposition 1.7 ([1]). Let L = (L,∧,∨,�,→, 0, 1) be a complete residuated
lattice. Then for all x, y, yi ∈ L, the following hold.

(1) x→ x = 1.
(2) 1→ x = x.
(3) x� (x→ y) ≤ y.
(4) x�

∧
i yi ≤

∧
i(x� yi).

(5) y1 ≤ y2 implies x� y1 ≤ x� y2 (isotonicity of �).

Definition 1.8 ([6]). Let R : X × Y → L be a fuzzy relation from X to Y .
Define σ(R) : Y × Y → L by

σ(R)(y1, y2) =
∧
x∈X

[R(x, y1)→ R(x, y2)] for all y1, y2 ∈ Y .

Define ρ(R) : X ×X → L by

ρ(R)(x1, x2) =
∧
y∈Y

[R(x2, y)→ R(x1, y)] for all x1, x2 ∈ X.
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2. Results

Lemma 2.1. Let R : X × Y → L be a fuzzy relation from a set X to a set Y .

(1) For all y1 ∈ Y , there exists y2 ∈ Y such that σ(R)(y1, y2) = 1.
(2) For all x1 ∈ X, there exists x2 ∈ X such that ρ(R)(x1, x2) = 1.
(3)

∨
y2∈Y σ(R)(y1, y2) = 1 for all y1 ∈ Y , and

∨
x2∈X ρ(R)(x1, x2) = 1 for

all x1 ∈ X.

Proof. (1) Let y1 ∈ Y . Then

σ(R)(y1, y1) =
∧
x∈X

[R(x, y1)→ R(x, y1)]

=
∧
x∈X

1 by Proposition 1.7(1)

= 1

(2) Let x1 ∈ X. Then

ρ(R)(x1, x1) =
∧
y∈Y

[R(x1, y)→ R(x1, y)]

=
∧
y∈Y

1 by Proposition 1.7(1)

= 1

(3) It follows from (1) and (2).
�

Lemma 2.2. Let R : X × X → L be a fuzzy relation from X to X. If R is
reflexive, then σ(R) ≤ R and ρ(R) ≤ R.

Proof. Note that for all y1, y2 ∈ X, we have

σ(R)(y1, y2) =
∧
x∈X

[R(x, y1)→ R(x, y2)]

≤ R(y1, y1)→ R(y1, y2)

= 1→ R(y1, y2) since R is reflexive

= R(y1, y2) by Proposition 1.7(2).

Hence σ(R) ≤ R.
Similarly, for all x1, x2 ∈ X, we have

ρ(R)(x1, x2) =
∧
y∈X

[R(x2, y)→ R(x1, y)

≤ R(x2, x2)→ R(x1, x2)

= 1→ R(x1, x2) since R is reflexive

= R(x1, x2).

Hence ρ(R) ≤ R. �
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Theorem 2.3. Let E be an indistinguishable operator on X. Let R : X×X → L
be a fuzzy relation such that

R(x, y)�R(x′, y′)� E(x, x′) ≤ E(y, y′) for all x, x′, y, y′ ∈ X. (1)

If R is reflexible, then σ(R) and ρ(R) are strong fuzzy functions with respect to
E and E.

Proof. By Lemma 2.1 (1) and (2), both of σ(R) and ρ(R) satisfy the condition
(1) in Definition 1.5.

Let y1, y
′
1, y2, y

′
2 ∈ X. Then

σ(R)(y1, y2)� σ(R)(y′1, y
′
2)� E(y1, y

′
1)

≤ R(y1, y2)�R(y′1, y
′
2)� E(y1, y

′
1) by Lemma 2.2

≤ E(y2, y
′
2) by Eq. (1).

Therefore σ(R) is a strong fuzzy function with respect to E and E.
Let x1, x2, x

′
1, x
′
2 ∈ X. Then

ρ(R)(x1, x2)� ρ(R)(x′1, x
′
2)� E(x1, x

′
1)

≤ R(x1, x2)�R(x′1, x
′
2)� E(x1, x

′
1) by Lemma 2.2

≤ E(x2, x
′
2) by Eq. (1).

Therefore ρ(R) is a strong fuzzy function with respect to E and E. �

By Theorem 2.3, we have the following.

Corollary 2.4. Let E be an indistinguishable operator on X. Let R : X×X → L
be a strong fuzzy function with respect to E and E. If R is reflexible, then σ(R)
and ρ(R) are strong fuzzy functions with respect to E and E.

Theorem 2.5. Let E be an indistinguishable operator on X. Let R : X ×X →
L be extensional with respect to E and E. Then both of σ(R) and ρ(R) are
extensional with respect to E and E.

Proof. Let y1, y
′
1, y2, y

′
2 ∈ X. We must show that

σ(R)(y1, y2)� E(y1, y
′
1)� E(y2, y

′
2) ≤ σ(R)(y′1, y

′
2).

Since

σ(R)(y1, y2)� E(y1, y
′
1)� E(y2, y

′
2)

=
∧
x∈X

[R(x, y1)→ R(x, y2)]� E(y1, y
′
1)� E(y2, y

′
2)

≤
∧
x∈X
{[R(x, y1)→ R(x, y2)]� E(y1, y

′
1)� E(y2, y

′
2)} by Proposition 1.7(4),

it is enough to show that for all x ∈ X,

[R(x, y1)→ R(x, y2)]� E(y1, y
′
1)� E(y2, y

′
2) ≤ R(x, y′1)→ R(x, y′2). (2)
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Note that Eq. (2) holds if and only if

[R(x, y1)→ R(x, y2)]�R(x, y′1)� E(y1, y
′
1)� E(y2, y

′
2) ≤ R(x, y′2). (3)

Note that

[R(x, y1)→ R(x, y2)]�R(x, y′1)� E(y1, y
′
1)� E(y2, y

′
2)

= [R(x, y1)→ R(x, y2)]�R(x, y′1)� E(x, x)� E(y′1, y1)� E(y2, y
′
2)

≤ R(x, y1)� [R(x, y1)→ R(x, y2)]� E(y2, y
′
2) since R is extensional

≤ R(x, y2)� E(y2, y
′
2) by Propostion 1.7(3)

= R(x, y2)� E(x, x)� E(y2, y
′
2)

≤ R(x, y′2) since R is extensional.

Therefore σ(R) is extensional with respect to E and E.
Let x1, x

′
1, x2, x

′
2 ∈ X. We must show that

ρ(R)(x1, x2)� E(x1, x
′
1)� E(x2, x

′
2) ≤ ρ(R)(x′1, x

′
2).

Since

ρ(R)(x1, x2)� E(x1, x
′
1)� E(x2, x

′
2)

=
∧
y∈X

[R(x2, y)→ R(x1, y)]� E(x1, x
′
1)� E(x2, x

′
2)

≤
∧
y∈X
{[R(x2, y)→ R(x1, y)]� E(x1, x

′
1)� E(x2, x

′
2)} by Proposition 1.7(4),

it is enough to show that for any y ∈ X,

[R(x2, y)→ R(x1, y)]� E(x1, x
′
1)� E(x2, x

′
2) ≤ R(x′2, y)→ R(x′1, y). (4)

Note that Eq. (4) holds if and only if

[R(x2, y)→ R(x1, y)]�R(x′2, y)� E(x1, x
′
1)� E(x2, x

′
2) ≤ R(x′1, y).

Note that

R(x2, y)→ R(x1, y)]�R(x′2, y)� E(x1, x
′
1)� E(x2, x

′
2)

= [R(x2, y)→ R(x1, y)]�R(x′2, y)� E(x′2, x2)� E(y, y)� E(x1, x
′
1)

≤ [R(x2, y)→ R(x1, y)]�R(x2, y)� E(x1, x
′
1) since R is extensional

≤ R(x1, y)� E(x1, x
′
1) by Proposition 1.7(4)

= R(x1, y)� E(x1, x
′
1)� E(y, y)

≤ R(x′1, y) since R is extensional.

Therefore ρ(R) is extensional with respect to E and E. �

Theorem 2.6. Let R : X × X → L be a partial fuzzy function where E is an
indistinguishable operator on X. If R is reflexive, then both of σ(R) and ρ(R)
are partial fuzzy functions.
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Proof. We already know by Theorem 2.5 that both of σ(R) and ρ(R) are exten-
sional with respect to E and E.

Let y1, y2, y
′
2 ∈ X. We must show that

σ(R)(y1, y2)� σ(R)(y1, y
′
2) ≤ E(y2, y

′
2).

Note that

σ(R)(y1, y2)� σ(R)(y1, y
′
2) ≤ R(y1, y2)�R(y1, y

′
2) by Lemma 2.2

≤ E(y2, y
′
2) since R is a partial fuzzy function.

Hence σ(R) is a partial fuzzy function.
Let x1, x2, x

′
2 ∈ X. We must show that

ρ(R)(x1, x2)� σ(R)(x1, x
′
2) ≤ E(x2, x

′
2).

Note that

ρ(R)(x1, x2)� ρ(R)(x1, x
′
2) ≤ R(x1, x2)�R(x1, x

′
2) by Lemma 2.2

≤ E(x2, x
′
2) since R is a partial fuzzy function.

Hence ρ(R) is a partial fuzzy function. �

Theorem 2.7. If R : X×X → L is fully defined where E is an indistinguishable
operator on X, then σ(R) and ρ(R) is fully defined.

Proof. Since R is fully defined, R is extensional with respect to E and E, and so
by Theorem 2.5, both of σ(R) and ρ(R) are extensional with respect to E and
E. Now, by Lemma 2.1(3), both of σ(R) and ρ(R) are fully defined. �

By Lemma 2.1 (1), (2), Theorems 2.5 and 2.6, we have the following.

Theorem 2.8. Let R : X × X → L be a partial fuzzy function where E is an
indistinguishable operator on X. If R is reflexive, then both of σ(R) and ρ(R)
are perfect fuzzy functions.

As an immediate consequence of Theorem 2.8, we have the following.

Corollary 2.9. If R : X × X → L be a reflexive perfect fuzzy function where
E is an indistinguishable operator on X, then both of σ(R) and ρ(R) are perfect
fuzzy functions.

By Theorems 2.6 and 2.7, we have the following.

Theorem 2.10. Let R : X ×X → L be a partial fuzzy function where E is an
indistinguishable operator on X. If R is reflexive, then both of σ(R) and ρ(R)
are fuzzy functions.

As an immediate consequence of Theorem 2.10, we have the following.

Corollary 2.11. If R : X ×X → L be a reflexive fuzzy function where E is an
indistinguishable operator on X, then both of σ(R) and ρ(R) are fuzzy functions.
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