SOME PROPERTIES RELATED TO FUZZY FUNCTIONS ON COMPLETE RESIDUATED LATTICES ${ }^{\dagger}$

YONG CHAN KIM, JU-MOK OH*

Abstract

In this paper we give some properties related to fuzzy functions on complete residuated lattices.

AMS Mathematics Subject Classification : 03E72, 06A15, 06F07, 54A05. Key words and phrases : complete residuated lattice, fuzzy function, partial fuzzy function, strong fuzzy function, perfect fuzzy function.

1. Introduction

A fuzzy function fuzzifies a concept of a function between two universes. This fuzzification has been researched by many authors (for examples, see $[2,3,4$, $5,7,8]$). In this paper we give some properties related to fuzzy functions on complete residuated lattices.

Definition $1.1([1])$. An algebra $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called a complete residuated lattice if
(1) $(L, \wedge, \vee, 0,1)$ is a complete lattice with the least element 0 and the greatest element 1 ;
(2) $(L, \odot, 1)$ is a commutative monoid (i.e., \odot is commutative, associated and $x \odot 1=x$ for all $x \in L)$;
(3) $x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ for all $x, y, z \in L$ (i.e., \odot and \rightarrow form adjoint pair).
Throughout this paper we always assume that $L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a complete residuated lattice.

Definition $1.2([7])$. Let $R: X \times X \rightarrow L$ be a fuzzy relation on a set X.
(1) R is reflexive if $R(x, x)=1$ for all $x \in X$.

[^0](2) R is symmetric if $R(x, y)=R(y, x)$ for all $x, y \in X$.
(3) R is transitive if $R(x, y) \odot R(y, z) \leq R(x, z)$ for all $x, y, z \in X$.
(4) R is an indistinguishable operator on X if R is reflexive, symmetric and transitive.

Definition 1.3 ([4]). Let E and F be two indistinguishable operators on X and Y respectively. A fuzzy relation $R: X \times Y \rightarrow L$ is extensional with respect to E and F if

$$
R(x, y) \odot E\left(x, x^{\prime}\right) \odot F\left(y, y^{\prime}\right) \leq R\left(x^{\prime}, y^{\prime}\right)
$$

Definition 1.4 ([4]). Let E and F be two indistinguishable operators on X and Y respectively. Let $R: X \times Y \rightarrow L$ be extensional with respect to E and F.
(1) R is a partial fuzzy function if $R(x, y) \odot R\left(x, y^{\prime}\right) \leq F\left(y, y^{\prime}\right)$ for all $x \in X$ and $y, y^{\prime} \in Y$.
(2) R is fully defined if $\bigvee_{y \in Y} R(x, y)=1$ for all $x \in X$.
(3) R is a fuzzy function if R is a partial fuzzy function and is fully defined.
(4) R is a perfect fuzzy function if (a) R is a partial fuzzy map and (b) for all $x \in X$, there exists $y \in Y$ such that $R(x, y)=1$.

Definition 1.5 ([4]). Let E and F be two indistinguishable operators on X and Y respectively. A fuzzy relation $R: X \times Y \rightarrow L$ is a strong fuzzy function with respect to E and F if
(1) for all $x \in X$, there exists $y \in Y$ such that $R(x, y)=1$, and
(2) $R(x, y) \odot R\left(x^{\prime}, y^{\prime}\right) \odot E\left(x, x^{\prime}\right) \leq F\left(y, y^{\prime}\right)$ for all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.

Definition 1.6 ([4]). Let E and F be two indistinguishable operators on X and Y respectively. Let $f: X \rightarrow Y$ be a crisp function. f is extensional with respect to E and F if

$$
E\left(x, x^{\prime}\right) \leq F\left(f(x), f\left(x^{\prime}\right)\right) \quad \text { for all } x, x^{\prime} \in X
$$

Proposition $1.7([1])$. Let $L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ be a complete residuated lattice. Then for all $x, y, y_{i} \in L$, the following hold.
(1) $x \rightarrow x=1$.
(2) $1 \rightarrow x=x$.
(3) $x \odot(x \rightarrow y) \leq y$.
(4) $x \odot \bigwedge_{i} y_{i} \leq \bigwedge_{i}\left(x \odot y_{i}\right)$.
(5) $y_{1} \leq y_{2}$ implies $x \odot y_{1} \leq x \odot y_{2}$ (isotonicity of \odot).

Definition $1.8([6])$. Let $R: X \times Y \rightarrow L$ be a fuzzy relation from X to Y. Define $\sigma(R): Y \times Y \rightarrow L$ by

$$
\sigma(R)\left(y_{1}, y_{2}\right)=\bigwedge_{x \in X}\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \quad \text { for all } y_{1}, y_{2} \in Y
$$

Define $\rho(R): X \times X \rightarrow L$ by

$$
\rho(R)\left(x_{1}, x_{2}\right)=\bigwedge_{y \in Y}\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \quad \text { for all } x_{1}, x_{2} \in X
$$

2. Results

Lemma 2.1. Let $R: X \times Y \rightarrow L$ be a fuzzy relation from a set X to a set Y.
(1) For all $y_{1} \in Y$, there exists $y_{2} \in Y$ such that $\sigma(R)\left(y_{1}, y_{2}\right)=1$.
(2) For all $x_{1} \in X$, there exists $x_{2} \in X$ such that $\rho(R)\left(x_{1}, x_{2}\right)=1$.
(3) $\bigvee_{y_{2} \in Y} \sigma(R)\left(y_{1}, y_{2}\right)=1$ for all $y_{1} \in Y$, and $\bigvee_{x_{2} \in X} \rho(R)\left(x_{1}, x_{2}\right)=1$ for all $x_{1} \in X$.

Proof. (1) Let $y_{1} \in Y$. Then

$$
\begin{aligned}
\sigma(R)\left(y_{1}, y_{1}\right) & =\bigwedge_{x \in X}\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{1}\right)\right] \\
& =\bigwedge_{x \in X} 1 \quad \text { by Proposition 1.7(1) } \\
& =1
\end{aligned}
$$

(2) Let $x_{1} \in X$. Then

$$
\begin{aligned}
\rho(R)\left(x_{1}, x_{1}\right) & =\bigwedge_{y \in Y}\left[R\left(x_{1}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \\
& =\bigwedge_{y \in Y} 1 \quad \text { by Proposition 1.7(1) } \\
& =1
\end{aligned}
$$

(3) It follows from (1) and (2).

Lemma 2.2. Let $R: X \times X \rightarrow L$ be a fuzzy relation from X to X. If R is reflexive, then $\sigma(R) \leq R$ and $\rho(R) \leq R$.
Proof. Note that for all $y_{1}, y_{2} \in X$, we have

$$
\begin{aligned}
\sigma(R)\left(y_{1}, y_{2}\right) & =\bigwedge_{x \in X}\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \\
& \leq R\left(y_{1}, y_{1}\right) \rightarrow R\left(y_{1}, y_{2}\right) \\
& =1 \rightarrow R\left(y_{1}, y_{2}\right) \text { since } R \text { is reflexive } \\
& =R\left(y_{1}, y_{2}\right) \text { by Proposition 1.7(2) }
\end{aligned}
$$

Hence $\sigma(R) \leq R$.
Similarly, for all $x_{1}, x_{2} \in X$, we have

$$
\begin{aligned}
\rho(R)\left(x_{1}, x_{2}\right) & =\bigwedge_{y \in X}\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right. \\
& \leq R\left(x_{2}, x_{2}\right) \rightarrow R\left(x_{1}, x_{2}\right) \\
& =1 \rightarrow R\left(x_{1}, x_{2}\right) \text { since } R \text { is reflexive } \\
& =R\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Hence $\rho(R) \leq R$.

Theorem 2.3. Let E be an indistinguishable operator on X. Let $R: X \times X \rightarrow L$ be a fuzzy relation such that

$$
\begin{equation*}
R(x, y) \odot R\left(x^{\prime}, y^{\prime}\right) \odot E\left(x, x^{\prime}\right) \leq E\left(y, y^{\prime}\right) \text { for all } x, x^{\prime}, y, y^{\prime} \in X \tag{1}
\end{equation*}
$$

If R is reflexible, then $\sigma(R)$ and $\rho(R)$ are strong fuzzy functions with respect to E and E.

Proof. By Lemma 2.1 (1) and (2), both of $\sigma(R)$ and $\rho(R)$ satisfy the condition (1) in Definition 1.5.

Let $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime} \in X$. Then

$$
\begin{aligned}
& \sigma(R)\left(y_{1}, y_{2}\right) \odot \sigma(R)\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \odot E\left(y_{1}, y_{1}^{\prime}\right) \\
& \leq R\left(y_{1}, y_{2}\right) \odot R\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \odot E\left(y_{1}, y_{1}^{\prime}\right) \quad \text { by Lemma } 2.2 \\
& \leq E\left(y_{2}, y_{2}^{\prime}\right) \quad \text { by Eq. }(1) .
\end{aligned}
$$

Therefore $\sigma(R)$ is a strong fuzzy function with respect to E and E.
Let $x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime} \in X$. Then

$$
\begin{aligned}
& \rho(R)\left(x_{1}, x_{2}\right) \odot \rho(R)\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \\
& \leq R\left(x_{1}, x_{2}\right) \odot R\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \quad \text { by Lemma } 2.2 \\
& \leq E\left(x_{2}, x_{2}^{\prime}\right) \quad \text { by Eq. }(1) .
\end{aligned}
$$

Therefore $\rho(R)$ is a strong fuzzy function with respect to E and E.
By Theorem 2.3, we have the following.
Corollary 2.4. Let E be an indistinguishable operator on X. Let $R: X \times X \rightarrow L$ be a strong fuzzy function with respect to E and E. If R is reflexible, then $\sigma(R)$ and $\rho(R)$ are strong fuzzy functions with respect to E and E.

Theorem 2.5. Let E be an indistinguishable operator on X. Let $R: X \times X \rightarrow$ L be extensional with respect to E and E. Then both of $\sigma(R)$ and $\rho(R)$ are extensional with respect to E and E.

Proof. Let $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime} \in X$. We must show that

$$
\sigma(R)\left(y_{1}, y_{2}\right) \odot E\left(y_{1}, y_{1}^{\prime}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right) \leq \sigma(R)\left(y_{1}^{\prime}, y_{2}^{\prime}\right) .
$$

Since

$$
\begin{aligned}
& \sigma(R)\left(y_{1}, y_{2}\right) \odot E\left(y_{1}, y_{1}^{\prime}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right) \\
& =\bigwedge_{x \in X}\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \odot E\left(y_{1}, y_{1}^{\prime}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right) \\
& \leq \bigwedge_{x \in X}\left\{\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \odot E\left(y_{1}, y_{1}^{\prime}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right)\right\} \text { by Proposition 1.7(4), }
\end{aligned}
$$

it is enough to show that for all $x \in X$,

$$
\begin{equation*}
\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \odot E\left(y_{1}, y_{1}^{\prime}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right) \leq R\left(x, y_{1}^{\prime}\right) \rightarrow R\left(x, y_{2}^{\prime}\right) \tag{2}
\end{equation*}
$$

Note that Eq. (2) holds if and only if

$$
\begin{equation*}
\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \odot R\left(x, y_{1}^{\prime}\right) \odot E\left(y_{1}, y_{1}^{\prime}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right) \leq R\left(x, y_{2}^{\prime}\right) \tag{3}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& {\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \odot R\left(x, y_{1}^{\prime}\right) \odot E\left(y_{1}, y_{1}^{\prime}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right)} \\
& =\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \odot R\left(x, y_{1}^{\prime}\right) \odot E(x, x) \odot E\left(y_{1}^{\prime}, y_{1}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right) \\
& \leq R\left(x, y_{1}\right) \odot\left[R\left(x, y_{1}\right) \rightarrow R\left(x, y_{2}\right)\right] \odot E\left(y_{2}, y_{2}^{\prime}\right) \quad \text { since } R \text { is extensional } \\
& \leq R\left(x, y_{2}\right) \odot E\left(y_{2}, y_{2}^{\prime}\right) \quad \text { by Propostion } 1.7(3) \\
& =R\left(x, y_{2}\right) \odot E(x, x) \odot E\left(y_{2}, y_{2}^{\prime}\right) \\
& \leq R\left(x, y_{2}^{\prime}\right) \quad \text { since } R \text { is extensional } .
\end{aligned}
$$

Therefore $\sigma(R)$ is extensional with respect to E and E.
Let $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime} \in X$. We must show that

$$
\rho(R)\left(x_{1}, x_{2}\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E\left(x_{2}, x_{2}^{\prime}\right) \leq \rho(R)\left(x_{1}^{\prime}, x_{2}^{\prime}\right)
$$

Since

$$
\begin{aligned}
& \rho(R)\left(x_{1}, x_{2}\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E\left(x_{2}, x_{2}^{\prime}\right) \\
& =\bigwedge_{y \in X}\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E\left(x_{2}, x_{2}^{\prime}\right) \\
& \leq \bigwedge_{y \in X}\left\{\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E\left(x_{2}, x_{2}^{\prime}\right)\right\} \text { by Proposition 1.7(4), }
\end{aligned}
$$

it is enough to show that for any $y \in X$,

$$
\begin{equation*}
\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E\left(x_{2}, x_{2}^{\prime}\right) \leq R\left(x_{2}^{\prime}, y\right) \rightarrow R\left(x_{1}^{\prime}, y\right) \tag{4}
\end{equation*}
$$

Note that Eq. (4) holds if and only if

$$
\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \odot R\left(x_{2}^{\prime}, y\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E\left(x_{2}, x_{2}^{\prime}\right) \leq R\left(x_{1}^{\prime}, y\right)
$$

Note that

$$
\begin{aligned}
& \left.R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \odot R\left(x_{2}^{\prime}, y\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E\left(x_{2}, x_{2}^{\prime}\right) \\
& =\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \odot R\left(x_{2}^{\prime}, y\right) \odot E\left(x_{2}^{\prime}, x_{2}\right) \odot E(y, y) \odot E\left(x_{1}, x_{1}^{\prime}\right) \\
& \leq\left[R\left(x_{2}, y\right) \rightarrow R\left(x_{1}, y\right)\right] \odot R\left(x_{2}, y\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \quad \text { since } R \text { is extensional } \\
& \leq R\left(x_{1}, y\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \quad \text { by Proposition } 1.7(4) \\
& =R\left(x_{1}, y\right) \odot E\left(x_{1}, x_{1}^{\prime}\right) \odot E(y, y) \\
& \leq R\left(x_{1}^{\prime}, y\right) \quad \text { since } R \text { is extensional. }
\end{aligned}
$$

Therefore $\rho(R)$ is extensional with respect to E and E.
Theorem 2.6. Let $R: X \times X \rightarrow L$ be a partial fuzzy function where E is an indistinguishable operator on X. If R is reflexive, then both of $\sigma(R)$ and $\rho(R)$ are partial fuzzy functions.

Proof. We already know by Theorem 2.5 that both of $\sigma(R)$ and $\rho(R)$ are extensional with respect to E and E.

Let $y_{1}, y_{2}, y_{2}^{\prime} \in X$. We must show that

$$
\sigma(R)\left(y_{1}, y_{2}\right) \odot \sigma(R)\left(y_{1}, y_{2}^{\prime}\right) \leq E\left(y_{2}, y_{2}^{\prime}\right)
$$

Note that

$$
\begin{aligned}
\sigma(R)\left(y_{1}, y_{2}\right) \odot \sigma(R)\left(y_{1}, y_{2}^{\prime}\right) & \leq R\left(y_{1}, y_{2}\right) \odot R\left(y_{1}, y_{2}^{\prime}\right) \quad \text { by Lemma } 2.2 \\
& \leq E\left(y_{2}, y_{2}^{\prime}\right) \quad \text { since } R \text { is a partial fuzzy function. }
\end{aligned}
$$

Hence $\sigma(R)$ is a partial fuzzy function.
Let $x_{1}, x_{2}, x_{2}^{\prime} \in X$. We must show that

$$
\rho(R)\left(x_{1}, x_{2}\right) \odot \sigma(R)\left(x_{1}, x_{2}^{\prime}\right) \leq E\left(x_{2}, x_{2}^{\prime}\right)
$$

Note that

$$
\begin{aligned}
\rho(R)\left(x_{1}, x_{2}\right) \odot \rho(R)\left(x_{1}, x_{2}^{\prime}\right) & \leq R\left(x_{1}, x_{2}\right) \odot R\left(x_{1}, x_{2}^{\prime}\right) \quad \text { by Lemma } 2.2 \\
& \leq E\left(x_{2}, x_{2}^{\prime}\right) \quad \text { since } R \text { is a partial fuzzy function. }
\end{aligned}
$$

Hence $\rho(R)$ is a partial fuzzy function.
Theorem 2.7. If $R: X \times X \rightarrow L$ is fully defined where E is an indistinguishable operator on X, then $\sigma(R)$ and $\rho(R)$ is fully defined.
Proof. Since R is fully defined, R is extensional with respect to E and E, and so by Theorem 2.5, both of $\sigma(R)$ and $\rho(R)$ are extensional with respect to E and E. Now, by Lemma $2.1(3)$, both of $\sigma(R)$ and $\rho(R)$ are fully defined.

By Lemma 2.1 (1), (2), Theorems 2.5 and 2.6, we have the following.
Theorem 2.8. Let $R: X \times X \rightarrow L$ be a partial fuzzy function where E is an indistinguishable operator on X. If R is reflexive, then both of $\sigma(R)$ and $\rho(R)$ are perfect fuzzy functions.

As an immediate consequence of Theorem 2.8, we have the following.
Corollary 2.9. If $R: X \times X \rightarrow L$ be a reflexive perfect fuzzy function where E is an indistinguishable operator on X, then both of $\sigma(R)$ and $\rho(R)$ are perfect fuzzy functions.

By Theorems 2.6 and 2.7, we have the following.
Theorem 2.10. Let $R: X \times X \rightarrow L$ be a partial fuzzy function where E is an indistinguishable operator on X. If R is reflexive, then both of $\sigma(R)$ and $\rho(R)$ are fuzzy functions.

As an immediate consequence of Theorem 2.10, we have the following.
Corollary 2.11. If $R: X \times X \rightarrow L$ be a reflexive fuzzy function where E is an indistinguishable operator on X, then both of $\sigma(R)$ and $\rho(R)$ are fuzzy functions.

References

1. R. Bělohlávek, Fuzzy Relational Systems, Foundations and Principles, Kluwer Academic, Plenum Publishers, New York, 2002.
2. M. Demirci, Fuzzy functions and their applications, J. Math. Anal. Appl. 252 (2000), 495-517.
3. M. Demirci, Fuzzy functions and their fundamental properties, Fuzzy Sets and Systems 106 (1999), 239-246.
4. M. Demirci and J. Recasens, Fuzzy groups, fuzzy functions and fuzzy equivalence relations, Fuzzy Sets and Systems 144 (2004), 441-458.
5. F. Klawonn, Fuzzy points, fuzzy relations and fuzzy functions in "Discovering World with Fuzzy Logic", Physica-Verlag, Heidelberg, 2000.
6. H. Lai and D. Zhang, Good fuzzy preorders on fuzzy power structures, Arch. Math. Log. 49 (2010), 469-489.
7. J. Recasens, Indistinguishability operators, Springer-Verlag, Berlin, 2010.
8. L. Valverde, On the structure of F-indistinguishability operators, Fuzzy sets and Systems 17 (1985), 313-328.

Yong Chan Kim received M.Sc. and Ph.D. from Yonsei University. He is currently a professor at Gangneung-Wonju National University since 1991. His research interests are fuzzy topology and rough set theory.

Department of Mathematics, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
e-mail: yck@gwnu.ac.kr
Ju-Mok Oh received M.Sc. and Ph.D. from Pohang University of Science and Technology. He is currently an associate professor at Gangneung-Wonju National University since 2012. His research interests are fuzzy theory, graph theory, combinatorics and group theory.

Department of Mathematics, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
e-mail: jumokoh@gwnu.ac.kr

[^0]: Received July 9, 2018. Revised October 25, 2018. Accepted October 29, 2018. **orresponding author.
 ${ }^{\dagger}$ This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University
 (c) 2019 Korean SIGCAM and KSCAM.

