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ANALYSIS OF THE 90/150 CA GENERATED BY LINEAR

RULE BLOCKS
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Abstract. Self-reciprocal polynomials are important because it is possible
to specify only half of the coefficients. The special case of the self-reciprocal

polynomial, the maximum weight polynomial, is particularly important. In

this paper, we analyze even cell 90/150 cellular automata with linear rule
blocks of the form < a1, · · · , an, d1, d2, bn, · · · , b1 >. Also we show that

there is no 90/150 CA of the form < Un|R2|U∗
n > or < Un|R2|U∗

n >
whose characteristic polynomial is f2n+2(x) = x2n+2 + · · · + x + 1 where

R2 =< d1, d2 > and Un =< 0, · · · , 0 >, and Un =< 1, · · · , 1 >.
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1. Introduction

Cellular Automata(CA) were originally introduced by Von Neumann in early
1950’s in order to study the logical properties of self-reproducing machines. Wol-
fram in early 1980’s suggested a simplified two-state three-neighborhood 1-D CA
with cells arranged linearly in one dimension [1]. CA has a simple, regular, mod-
ular and cascadable structure with logical neighborhood interconnection. The
simple structure of CA with logical interconnections is ideally suited for hardware
implementation [2]. For these reasons CA have been used for various applica-
tions such as pattern classification, cryptography, and pseudorandom-number
generation, etc. ([3] ∼ [7]). In this paper, we analyze 90/150 cellular automata
with transition rules of the form < Tn|R2|Bn >, where Tn =< a1, a2, · · · , an >
and R2 =< d1, d2 >, and Bn =< bn, bn−1, · · · , b1 >. Also we show that there
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is no 90/150 CA of the form < Un|R2|U∗n > or < Un|R2|U∗n > whose character-
istic polynomial is f2n+2(x) = x2n+2 + · · · + x + 1 where R2 =< d1, d2 > and
Un =< 0, · · · , 0 >, and Un =< 1, · · · , 1 >.

2. Preliminaries

A CA consists of a number of interconnected cells arranged spatially in a
regular manner [1]. In most simple case, a CA cell can exhibit two different
states(0 or 1) and the next state of each cell depends on the present states of
its three neighborhoods including itself. The state st+1

i of the ith cell at time
(t + 1) is denoted as

st+1
i = fi(s

t
i−1, s

t
i, s

t
i+1),

where sti denotes the state of the ith cell at time t and fi is the next state
function called the rule of the CA. If the next state generating logic employs
only XOR logic then it is called a linear rule. And a CA with all the cells having
linear rules is called a linear CA [2]. Since a linear CA employs XOR logic only
as the next state function, it can be represented as a matrix referred to as the
state transition matrix over GF (2). An n-cell CA is characterized by an n × n
state transition matrix. The state transition matrix T is constructed as

T =


d1 a1,2 0 · · · 0 0
a2,1 d2 a2,3 · · · 0 0
0 a3,2 d3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an,n−1 dn



ai,j =

 1, if the next state of the ith cell depends on the present state
of the jth cell

0, otherwise.

And ai,i = di, i = 1, 2, · · · , n.
In this paper, a CA is a null-boundary 90/150 CA fully specified by which

cells use 90 and 150. The transition rules 90 and 150 are defined as follows:

Rule 90 : st+1
i = sti−1 ⊕ sti+1

Rule 150 : st+1
i = sti−1 ⊕ sti ⊕ sti+1

According to rule 90, the value of a particular site st+1
i is the sum modulo 2

of the values of its two neighboring sites on the previous time step t. Rule 150
also includes the value of site sti. A natural form for the specification of 90/150
CA is an n-tuple < d1, d2, · · · , dn >, called the linear rule block, where di = 0
(resp. 1) if ith cell uses rule 90(resp. 150).

A polynomial is said to be a CA-polynomial if it is the characteristic poly-
nomial of some 90/150 CA. All irreducible polynomials are CA-polynomials [3]
and reducible polynomials which are power of irreducible polynomial are also
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CA-polynomials [8]. However, there is no criterion for whether a reducible poly-
nomial is a CA-polynomial or not.

In [3], Cattell et al. proposed a method for the synthesis of one-dimensional
90/150 Linear Hybrid Group CA(LHGCA) for irreducible polynomial. Cho et
al. [9] proposed a new efficient method for the synthesis of one-dimensional
90/150 LHGCA for any CA-polynomial as well as irreducible polynomial by
using Lanczos tridiagonalization algorithm. Sabater et al. [4] and Cho et al.
[6] proposed a method of constructing a linear 90/150 CA with characteristic
polynomial f(x)2

m

by concatenating the basic automaton whose characteristic
polynomial is f(x), which is irreducible. In this paper, we give a simpler proof
of the result of Sabater et al. [4] and Cho et al. [6].

3. Characteristic polynomial of the linear rule block < Tn|R2|Bn >

Let GF (2) be the finite field with two elements. Throughout, all polynomials
are assumed to be in GF (2)[x]. The characteristic polynomial ∆n of an n-cell
90/150 CA Cn is defined by ∆n = |Tn ⊕ xIn| where x is an indeterminate, In
is the n × n identity matrix and Tn is the linear rule block of Cn. Then the
following recurrence relation holds:

∆n = (x + dn)∆n−1 + ∆n−2 (3.1)

where ∆1 = x+d1, ∆0 = 1 [3]. Eq. (3.1) provides an efficient algorithm to com-
pute ∆n of a given n-cell 90/150 CA. We denote the characteristic polynomial
of sub-CA consisting of cells i through j by ∆i,j , where i ≤ j. We simply denote
∆1,i by ∆i. ∆i is said to be a CA-subpolynomial. Let T ∗n be the linear rule
block corresponding to the linear rule block Tn of an n-cell 90/150 CA as the
following T ∗n =< an, · · · , a2, a1 > and let ∆∗n be the characteristic polynomial of
T ∗n . Then ∆∗n = ∆n.
For any n-cell 90/150 CA whose linear rule block is Tn, the minimal polynomial
for Tn is the same as the characteristic polynomial for Tn [2].

Definition 3.1 ([10]). Let Tn =< a1, a2, · · · , an > be the linear rule block of an
n-cell 90/150 CA. Then < Tn|T ∗n >=< a1, a2, · · · , an, an, · · · , a2, a1 > is called
the CA with symmetric transition rule.

If A,B, and M differ only in the ith row (or column), and the ith row (or
column) of M is the sum of the ith rows (or columns) of A and B, then

|M | = |A|+ |B| (3.2)

Hereafter, we denote the linear rule block < a1, a2, · · · , an > of an n-cell
90/150 CA C by Tn.

Lemma 3.2 ([10]). Let V2n be the characteristic polynomial of < Tn|T ∗n >.
Then
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(i) V2n = (∆n + ∆n−1)2.
(ii) Let Tn =< a1, · · · , an−1, an > be the linear rule block of an n-cell 90/150
CA and let ∆n be the characteristic polynomial of Tn. Then V2n = (∆n)2.
(iii) Let D1 be the characteristic polynomial of the 1-cell 90/150 CA < d >. Let
M2n+1 =< a1, a2, · · · , an|d|an, · · · , a2, a1 > be the linear rule block of a (2n+1)-
cell 90/150 CA C2n+1. And let V2n+1 be the characteristic polynomial of M2n+1.
Then V2n+1 = D1∆2

n.

Hereafter, we denote the characteristic polynomial of the n-cell 90/150 CA
< 0, · · · , 0 > by Un(x). And we denote the characteristic polynomial of the
n-cell 90/150 CA < 1, 0, · · · , 0 > by hn(x).

Lemma 3.3 ([11]). We have

Un(x) = x2n + x2(2n−1−1) + x22(2n−2−1) + x23(2n−3−1) + · · ·+ x2n−3(23−1)

+x2n−2(22−1) + x2n−1

+ 1.

The following lemma is the result of [12]. Here, the result is represented by a
relation between Un(x) and hn(x).

Lemma 3.4. We have

Un(x) =

{
{hn/2(x)}2, n is even
x{Un−1

2
(x)}2, n is odd.

Lemma 3.5. We have
(i) hn(x) = xhn−1(x) + hn−2(x) (n ≥ 1), (h0(x) := 1, h−1(x) := 1).
(ii) hn(x) = (x + 1)Un−1(x) + Un−2(x) (n ≥ 1), (U0(x) := 1, U−1(x) := 0).
(iii) hn(x) = Un(x) + Un−1(x) (n ≥ 1).
(iv) h0(x) + h1(x) + · · ·+ hn(x) = Un(x) (n ≥ 1).

Proof. Part (i) and Part (ii) are the basic properties of the recurrence relation.
Using Eq. (3.2) we have

hn(x) =

∣∣∣∣∣∣∣∣∣∣∣

x + 1 1 0 · · · 0 0
1 x 1 · · · 0 0
0 1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 x

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

x 1 0 · · · 0 0
1 x 1 · · · 0 0
0 1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 x

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0 0
0 x 1 · · · 0 0
0 1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 x

∣∣∣∣∣∣∣∣∣∣∣
= Un(x) + Un−1(x)
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Part (iv) follows from Part (iii).
�

For the polynomial f(x) = xn+an−1x
n−1+· · ·+a1x+a0 over GF (2) of degree

n, the weight w(f) of f(x) is defined to be the number of nonzero coefficients
of f(x). The polynomial f(x) = xn + an−1x

n−1 + · · ·+ a1x + a0 over GF (2) of
degree n with w(f) = n+1 is called the maximum weight polynomial. Hereafter,
we denote the polynomial of degree n with maximum weight by fn(x). The
reciprocal f∗(x) of a polynomial f(x) of degree n over GF (2) is defined by
f∗(x) = xnf(x−1). The polynomial f(x) is called self-reciprocal if f∗(x) = f(x).
The fact that self-reciprocal polynomials are given by specifying only half of
their coefficients is of importance [5]. Self-reciprocal irreducible polynomials
over finite fields have been studied by many authors. In [13], Meyn studied the
construction of self-reciprocal irreducible polynomials over binary fields. The
self-reciprocal polynomial applies to the design of reversible error correcting
codes with a reverse read property and to the efficient implementation of LFSRs.
Such reversible codes are advantageous in certain data storage systems that can
read data in bi-direction.

Baum et al. [14] showed the following fact: For a given polynomial q(x)

over GF (2), the number of polynomials p(x) over GF (2) for which p(x)
q(x) =

[0; a1, a2, · · · , an] with deg(ai) = 1 for all i is either 0 or a power of two where
[0; a1, a2, · · · , an] is the continued fraction of p(x)/q(x). Using results of Baum
et al. [14], Mesirov et al. [15] showed the following fact: If a polynomial q(x)
over GF (2) has k distinct irreducible factors different from x and x + 1, and if

there is a polynomial p(x) over GF (2) for which p(x)
q(x) = [0; a1, a2, · · · , an] with

deg(ai) = 1 for all i, then there are 2k such p(x). Since f ′2m(x) = {fm−1(x)}2 6=
0, f2m(x) is square-free. And f2m(x) does not have x or x + 1 as a factor.
Choi et al. [8] proved the following theorem by associating continued fraction
[0; an, an−1, · · · , a1] with n-cell 90/150 CA < a1, a2, · · · , an >.

Example 3.1. For the CA-polynomial f14(x) = (x2 +x+1)(x4 +x+1)(x4 +
x3 + 1)(x4 + x3 + x2 + x + 1), there are 24 90/150 CA with the characteristic
polynomial f14(x) :

< 0, 0, 0, 1, 1, 0|0, 1|0, 1, 1, 0, 0, 0 > , < 0, 0, 1, 0, 1, 0|0, 1|0, 1, 0, 1, 0, 0 >
< 0, 1, 0, 0, 1, 0|0, 1|0, 1, 0, 0, 1, 0 > , < 0, 1, 1, 0, 1, 1|0, 1|1, 1, 0, 1, 1, 0 >
< 1, 0, 0, 1, 0, 0|0, 1|0, 0, 1, 0, 0, 1 > , < 1, 0, 1, 1, 0, 1|0, 1|1, 0, 1, 1, 0, 1 >
< 1, 1, 0, 1, 0, 1|0, 1|1, 0, 1, 0, 1, 1 > , < 1, 1, 1, 0, 0, 1|0, 1|1, 0, 0, 1, 1, 1 >
< 0, 0, 0, 1, 1, 0|1, 0|0, 1, 1, 0, 0, 0 > , < 0, 0, 1, 0, 1, 0|1, 0|0, 1, 0, 1, 0, 0 >
< 0, 1, 0, 0, 1, 0|1, 0|0, 1, 0, 0, 1, 0 > , < 0, 1, 1, 0, 1, 1|1, 0|1, 1, 0, 1, 1, 0 >
< 1, 0, 0, 1, 0, 0|1, 0|0, 0, 1, 0, 0, 1 > , < 1, 0, 1, 1, 0, 1|1, 0|1, 0, 1, 1, 0, 1 >
< 1, 1, 0, 1, 0, 1|1, 0|1, 0, 1, 0, 1, 1 > , < 1, 1, 1, 0, 0, 1|1, 0|1, 0, 0, 1, 1, 1 >.
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Theorem 3.6. If fn(x) (n is even) is a CA-polynomial and has k distinct irre-
ducible factors, then there are 2k 90/150 CA whose characteristic polynomial is
fn(x).

From now on, the characteristic polynomial of the n-cell 90/150 CA < a1, · · · , an >
may simply be expressed as < a1, · · · , an > if necessary.

Lemma 3.7. Let V2n+2(x) be the characteristic polynomial of < Tn|d1, d2|T ∗n >.
If V2n+2(x) = f2n+2(x), then d1 6= d2.

Proof. Suppose that d1 = d2. Then < Tn|d1, d2|T ∗n >=< Tn+1|T ∗n+1 > where
Tn+1 =< Tn|d1 >. By Lemma 3.2 (ii), the characteristic polynomial of <
Tn|d1, d2|T ∗n > is < Tn|d1 >2. But V2n+2(x) =< Tn|d1 >2 is not equal to
f2n+2(x) because f2n+2(x) is square-free. �

Corollary 3.8. Characteristic polynomials of < Tn|0, 0|T ∗n > and < Tn|1, 1|T ∗n >
are not equal to f2n+2(x).

Thus the transition rule of the CA with the characteristic polynomial f2n+2(x)
may be only in < Tn|0, 1|T ∗n > or < Tn|1, 0|T ∗n >. Since the characteristic poly-
nomials of < Tn|0, 1|T ∗n > and < Tn|1, 0|T ∗n > are the same, only the linear rule
block < Tn|0, 1|T ∗n > needs to be investigated.
Sabater et al. [4] and Cho et al. [6] analyzed the linear rule block < Tn|T ∗n >
and Cho et al. ([10], [16]) analyzed various extended forms of < Tn|T ∗n >. Here
we analyze the characteristic polynomial of the most general linear rule block
< Tn|R2|Bn >. The calculation of the characteristic polynomial of linear rule
block is usually performed by cofactor expansion for the last row, but as in the
proof of the following theorem, the cofactor expansion for the row corresponding
to the last cell of the second rule block simplifies the calculation of the charac-
teristic polynomial.

Theorem 3.9. Let Bn =< bn, · · · , b2, b1 > be the linear rule block of an n-cell
90/150 CA. Let < Tn|R2|Bn > be the linear rule block of a (2n+ 2)-cell 90/150
CA C2n+2 where R2 =< d1, d2 >. Let V2n+2(x) be the characteristic polynomial
of < Tn|R2|Bn >. Then

V2n+2(x) = D2∆n∇n + (x + d1)∆n∇n−1 + (x + d2)∆n−1∇n + ∆n−1∇n−1

, where D2 is the characteristic polynomial of the 2-cell 90/150 CA R2 and
∆n−1 is the characteristic polynomial of < a1, a2, · · · , an−1 > and ∆n is the
characteristic polynomial of Tn and ∇n−1 is the characteristic polynomial of
< bn−1, · · · , b2, b1 >, and ∇n is the characteristic polynomial of Bn.

Proof. Let M(i : j) denote the submatrix obtained by removing the ith row and
the jth column of M . By cofactor expansion along the (n + 2)th row, we have
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V2n+2(x) = {(x + d1)∆n + ∆n−1}(x + d2)∇n

+1 · |M(n + 2 : n + 1)|+ 1 · |M(n + 2 : n + 3)|
= {(x + d1)∆n + ∆n−1}(x + d2)∇n + ∆n∇n

+{(x + d1)∆n + ∆n−1}∇n−1
= {(x + d1)(x + d2) + 1}∆n∇n + (x + d1)∆n∇n−1

+(x + d2)∆n−1∇n + ∆n−1∇n−1
= D2∆n∇n + (x + d1)∆n∇n−1 + (x + d2)∆n−1∇n + ∆n−1∇n−1,

where M =< Tn, R2, Bn > +xI2n+2. �

Corollary 3.10. Let Bn =< bn, · · · , b2, b1 > be the linear rule block of an n-cell
90/150 CA. Then the characteristic polynomial V2n+2(x) of < Tn|R2|Bn > is as
follows:

V2n+2(x) = ∆n+1∇n+1 + ∆n∇n

, where R2 =< d1, d2 > and ∆n+1 =< Tn|d1 >, and ∇n+1 =< d2|Bn >.

Now we investigate the characteristic polynomial of < Tn|R2|Bn > where
Bn = T ∗n . Using Theorem 3.9 we can prove

Theorem 3.11 ( [16]). The characteristic polynomial V2n+2(x) of < Tn|R2|T ∗n >
is V2n+2(x) = D2∆2

n + (d1 + d2)∆n∆n−1 + ∆2
n−1, where D2 is the characteristic

polynomial of the 2-cell 90/150 CA R2 =< d1, d2 >.

Theorem 3.11 provides the more simple proof of the following Sabater’ result
[4]:

Corollary 3.12. We have

< a1, a2, · · · , an, an+1, an+1, an, · · · , a1 >=< a1, · · · , an, an+1 >2 .

Proof. For < d1, d2 >=< an+1, an+1 >, since D2 = x2 + an+1, using Theorem
3.11 we have

< a1, a2, · · · , an, an+1, an+1, an, · · · , a1 >
= (x2 + an+1)∆2

n + ∆2
n−1

= {(x + an+1)∆n + ∆n−1}2
= < a1, · · · , an, an+1 >2.

�

Corollary 3.13. The characteristic polynomial V2n+2(x) of < Tn|0, 1|T ∗n > is
(∆n+1 + ∆n)2 + ∆n+1∆n where ∆n+1 =< Tn|0 >= x∆n + ∆n−1.

Proof. Using Theorem 3.11 we have
V2n+2(x) = (x2 + x + 1)∆2

n + ∆n∆n−1 + ∆2
n−1

= (x∆n + ∆n−1)2 + (x∆n + ∆n−1)∆n + ∆2
n

= ∆2
n+1 + ∆2

n + ∆n+1∆n

= (∆n+1 + ∆n)2 + ∆n+1∆n

where ∆n+1 =< Tn|0 >= x∆n + ∆n−1.
�
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Example 3.2. (i) < 0, 0, 0, 0, 0, 0, 0, 0 >= (x4 + x3 + x2 + 1)2 = {h4(x)}2.
(ii) < 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 >= (x5 + x4 + x2 + x + 1)2 = {h5(x)}2.

4. Analysis of the n-cell 90/150 CA corresponding to fn(x)

In [8], we performed several studies on 90/150 CA corresponding to fn(x). In
[17], we gave a necessary and sufficient condition for finding a 90/150 CA whose
characteristic polynomial is fn(x). In this section, we use this condition to show
that there is no 90/150 CA of the form < Un|R2|U∗n > or < Un|R2|U∗n > whose
characteristic polynomial is f2n+2(x) = x2n+2+ · · ·+x+1 where R2 =< d1, d2 >
and Un =< 0, · · · , 0 >, and Un =< 1, · · · , 1 >.

Theorem 4.1 ([17]). Let ∆n be the characteristic polynomial of an n-cell 90/150
CA Tn =< a1, a2, · · · , an > and let V2n+2(x) be the characteristic polynomial of
the (2n + 2)-cell 90/150 CA < Tn|0, 1|T ∗n >. Then the following are equivalent:
(1) V2n+2(x) = f2n+2(x).
(2) (∆n+1∆n)′ = {fn(x)}2.
(3) fn(x) =

∑n
i=0 ∆i.

Theorem 4.1 shows that if fn(x) =
∑n

i=0 ∆i, then < Tn|0, 1|T ∗n > is 90/150
CA corresponding to f2n+2(x) where ∆n is the characteristic polynomial of
Tn =< a1, a2, · · · , an >. Using Theorem 4.1 we can prove

Corollary 4.2. Let < Tn|0, 1|T ∗n >= f2n+2(x). Then a1 + a2 + · · · + an ≡
0 (mod 2).

Proof. By Theorem 4.1, fn(x) =
∑n

i=0 ∆i. Since the coefficient of xn−1 in
∆n is a1 + a2 + · · · + an, we have a1 + a2 + · · · + an ≡ 0 (mod 2) because
fn(x) =

∑n
i=0 ∆i. �

Corollary 4.3. If there is no n-cell 90/150 CA Tn =< a1, a2, · · · , an > with
fn(x) =

∑n
i=0 ∆i, then the transition rule of f2n+2(x) is not of the form <

Tn|0, 1|T ∗n >.

From now on, we analyze the n-cell 90/150 CA Tn =< a1, a2, · · · , an > with
fn(x) =

∑n
i=0 ∆i.

Example 4.1. There is no 2-cell 90/150 CA T2 =< a1, a2 > of f6(x) of the
form < T2|0, 1|T ∗2 >=< a1, a2, 0, 1, a2, a1 >.
For each a1, a2 ∈ {0, 1}2, the following holds:∑2

i=0 ∆i = (x + a2)∆1 = (x + a2)(x + a1)
= x2 + (a1 + a2)x + a1a2
6= f2(x).

From Theorem 4.1, V6(x) 6= f6(x).
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Remark 4.1. There is no 2-cell 90/150 CA T2 =< a1, a2 > of f6(x) of the form
< T2|d1, d2|T ∗2 >=< a1, a2, d1, d2, a2, a1 >.

Example 4.2. Since the CA-polynomial f8(x) is (x2 +x+1)(x6 +x3 +1), by
Theorem 3.6, there are 22 90/150 CA with the characteristic polynomial f8(x).
We can find those four 90/150 CA using Theorem 4.1.

For each a1, a2, a3 ∈ {0, 1}3, suppose that
∑3

i=0 ∆i = f3(x) holds:
Now, we have∑3

i=0 ∆i = x3 + (a1 + a2 + a3)x2 + {a1a2 + (a1 + a2)a3 + 1}x
+ a1a2a3 + a3.

This implies a1 + a2 + a3 = 1, a1a2 + (a1 + a2)a3 = 0, a1a2a3 + a3 = 1.
It follows directly that the solution (a1, a2, a3) is (0, 1, 1) or (1, 0, 1).
Hence there are only four 8-cell 90/150 CA with the characteristic polynomial
f8(x):

< 0, 1, 1, 0, 1, 1, 1, 0 > , < 0, 1, 1, 1, 0, 1, 1, 0 >
< 1, 0, 1, 0, 1, 1, 0, 1 > , < 1, 0, 1, 1, 0, 1, 0, 1 >

Theorem 4.4. For n ≥ 2, the characteristic polynomial V2n+2(x) of the (2n+2)-
cell 90/150 CA < Un|0, 1|U∗n > is not equal to f2n+2(x).

Proof. For n = 2 we showed that < 0, 0, d1, d2, 0, 0 > is not equal to f6(x) in
Example 4.1.

(i) For the case n = 2m(m ≥ 2) :
By Lemma 3.4, we have

∆2m + ∆2m−1 + · · ·+ ∆1 + ∆0

= (∆2m + ∆2m−2 + · · ·+ ∆2 + ∆0)
+ (∆2m−1 + ∆2m−3 + · · ·+ ∆3 + ∆1)
= {hm(x) + hm−1(x) + · · ·+ h1(x) + h0(x)}2
+ x{Um−1(x) + Um−2(x) + · · ·+ U1(x) + U0(x)}2.

Suppose that f2m(x) =
∑2m

i=0 ∆i. Then
{hm(x) + hm−1(x) + · · ·+ h1(x) + h0(x)}2

= x2m + x2m−2 + · · ·+ x2 + 1
= (xm + xm−1 + · · ·+ x + 1)2

= {fm(x)}2

and
x{Um−1(x) + Um−2(x) + · · ·+ U1(x) + U0(x)}2

= x2m−1 + x2m−3 + · · ·+ x3 + x
= x(xm−1 + xm−2 + · · ·+ x + 1)2

= x{fm−1(x)}2.

Thus hm(x)+hm−1(x)+· · ·+h1(x)+h0(x) = fm(x) and Um−1(x)+Um−2(x)+
· · ·+ U1(x) + U0(x) = fm−1(x). Now, by Lemma 3.5(ii) we have



32 Analysis of the 90/150 CA generated by linear rule blocks

hm(x) = (x + 1)Um−1(x) + Um−2(x)
hm−1(x) = (x + 1)Um−2(x) + Um−3(x)

...
h2(x) = (x + 1)U1(x) + U0(x) (4.1)
h1(x) = (x + 1)U0(x)
h0(x) = 1.

If we add each term of the above equations, then the sum of the left side is
fm(x), so we obtain

fm(x) = (x + 1){Um−1(x) + Um−2(x) + · · ·+ U1(x) + U0(x)}
+Um−2(x) + Um−3(x) + · · ·+ U1(x)

= (x + 1)fm−1(x) + {Um−1(x) + U0(x) + fm−1(x)}.
Thus fm(x) = xfm−1(x)+Um−1(x)+1 = fm(x)+Um−1(x). Hence Um−1(x) =

0. This is a contradiction for m ≥ 2. Hence by Theorem 4.1 V2n+2(x) 6=
f2n+2(x).

(ii) For the case n = 2m− 1(m ≥ 2):
By Lemma 3.4, we have

∆2m−1 + ∆2m−2 + · · ·+ ∆1 + ∆0

= (∆2m−1 + ∆2m−3 + · · ·+ ∆3 + ∆1)
+(∆2m−2 + ∆2m−4 + · · ·+ ∆2 + ∆0)

= {U2m−1(x) + U2m−3(x) + · · ·+ U3(x) + U1(x)}
+{U2m−2(x) + U2m−4(x) + · · ·+ U2(x) + U0(x)}

= x{Um−1(x) + Um−2(x) + · · ·+ U1(x) + U0(x)}2
+{hm−1(x) + hm−2(x) + · · ·+ h1(x) + h0(x)}2.

Suppose that f2m−1(x) =
∑2m−1

i=0 ∆i. Then
hm−1(x)+hm−2(x)+· · ·+h1(x)+h0(x) = fm−1(x) and Um−1(x)+Um−2(x)+

· · ·+ U1(x) + U0(x) = fm−1(x).
Using Lemma 3.5, we have
Um−1(x) = fm−1(x) and Um−1(x)+Um−2(x)+· · ·+U1(x)+U0(x) = fm−1(x).

Thus Um−2(x) + · · · + U1(x) + U0(x) = 0. This is a contradiction for m ≥ 2.
Hence by Theorem 4.1 V2n+2(x) 6= f2n+2(x). �

Remark 4.2. (i) In Theorem 4.4, we showed that V2n+2(x) = f2n+2(x) when
n ≥ 2. However, the characteristic polynomial of the 4-cell 90/150 CA <
0, 0, 1, 0 > is f4(x).
(ii) The characteristic polynomial of the form < Un|d1, d2|U∗n > (n ≥ 2) is not
equal to f2n+2(x).

Theorem 4.5. For n ≥ 1, the characteristic polynomial V2n+2(x) of the (2n+2)-
cell 90/150 CA < Un|0, 1|U∗n > is not equal to f2n+2(x) where Un =< 1, · · · , 1 >.

Proof. The characteristic polynomial x4 + x3 + 1 of the 4-cell 90/150 CA <
1, 0, 1, 1 > is not equal to f4(x). For n = 2 we showed that < 1, 1, d1, d2, 1, 1 >
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is not equal to f6(x) in Example 4.1.

(i) For the case n = 2m(m ≥ 2) :
By Lemma 3.4, we have

∆2m + ∆2m−1 + · · ·+ ∆1 + ∆0

= (∆2m + ∆2m−2 + · · ·+ ∆2 + ∆0)
+(∆2m−1 + ∆2m−3 + · · ·+ ∆3 + ∆1)

= (U2m(x) + U2m−2(x) + · · ·+ U2(x) + U0(x))
+(U2m−1(x) + U2m−3(x) + · · ·+ U3(x) + U1(x))

= {hm(x + 1) + hm−1(x + 1) + · · ·+ h1(x + 1) + h0(x + 1)}2
+(x + 1){Um−1(x + 1) + Um−2(x + 1) + · · ·+ U1(x + 1) + U0(x + 1)}2 .

Suppose that f2m(x) =
∑2m−1

i=0 ∆i. Then
Um−1(x + 1) + Um−2(x + 1) + · · ·+ U1(x + 1) + U0(x + 1) = fm−1(x) and

(Um−1(x + 1) + Um−2(x + 1) + · · ·+ U1(x + 1) + U0(x + 1))
+(hm−1(x + 1) + · · ·+ h1(x + 1) + h0(x + 1))

= fm−1(x).

Thus Um−1(x+1) = 0. This is a contradiction for m ≥ 2. Hence by Theorem
4.1 V2n+2(x) 6= f2n+2(x).

(ii) For the case n = 2m− 1(m ≥ 2):
By Lemma 3.4, we have

∆2m−1 + ∆2m−2 + · · ·+ ∆1 + ∆0

= (∆2m−1 + ∆2m−3 + · · ·+ ∆3 + ∆1)
+(∆2m−2 + ∆2m−4 + · · ·+ ∆2 + ∆0)

= (U2m−1(x) + U2m−3(x) + · · ·+ U3(x) + U1(x))
+(U2m−2(x) + U2m−4(x) + · · ·+ U2(x) + U0(x))

= (x + 1){Um−1(x + 1) + Um−2(x + 1) + · · ·+ U1(x + 1) + U0(x + 1)}2
+{hm−1(x + 1) + hm−2(x + 1) + · · ·+ h1(x + 1) + h0(x + 1)}2

= (x + 1){Um−1(x + 1) + Um−2(x + 1) + · · ·+ U1(x + 1) + U0(x + 1)}2
+{hm(x + 1) + hm−1(x + 1) + · · ·+ h1(x + 1) + h0(x + 1)}2.

Suppose that f2m−1(x) =
∑2m−1

i=0 ∆i. Then
Um−1(x+ 1) + · · ·+U1(x+ 1) +U0(x+ 1) = fm−1(x) and Um−2(x+ 1) + · · ·+

U1(x + 1) + U0(x + 1) = fm−1(x).
Thus Um−1(x+1) = 0. This is a contradiction for m ≥ 2. Hence by Theorem

4.1 V2n+2(x) 6= f2n+2(x). �

Remark 4.3. The characteristic polynomial of the form < Un|d1, d2|U∗n > (n ≥
1) is not equal to f2n+2(x).

5. Conclusion

Maximum weight polynomials over GF (2) are important both in the theo-
retical and practical applications. In this paper, we analyzed 90/150 cellular
automata with linear rule blocks of the form < a1, · · · , an|d1, d2|bn, · · · , b1 >.
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This is an extension of the results of [16]. Also we showed that there is no 90/150
CA of the form < Un|R2|U∗n > or < Un|R2|U∗n > whose characteristic polynomial
is f2n+2(x) = x2n+2 + · · ·+ x + 1 where R2 =< d1, d2 > and Un =< 0, · · · , 0 >,
and Un =< 1, · · · , 1 >.
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