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1. Introduction

Coupled fixed point results constitute a chapter in metric fixed point theory
which has been in focus in recent times. Although the concept was introduced
some time back in 1987 by Guo et al. [14], it was after the publication of the work
of Bhaskar et al. [13] that a large number of papers have been written on this
topic and on topics related to it. Particularly coupled coincidence point results
appeared in works like [2, 3, 7, 8, 9, 11, 15, 17, 18, 20, 21]. The commutativity
and compatibility conditions were defined in a separate way to suit the new
situation [2, 3, 7, 8, 9, 17, 18, 20].

Here we address a problem of the existence of a coupled coincidence point
between two functions under certain conditions. We assume that a particular
rational inequality is satisfied by the two functions. The use of rational inequality
in metric fixed point theory was initiated by Dass et al. in their work [12] in
which they extended the Banach’s contraction mapping principle by using a
contractive rational inequality. After that the rational inequalities have been
used in fixed point, coincidence point and proximity point problem in a large
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number of papers as for instances in [1, 3, 4, 5, 6, 10, 16]. Further we work
out our result in partially ordered metric spaces. We use several partial order
conditions in our results.

In this paper we establish a coupled coincidence point theorem for mappings
F : X×X −→ X and g : X −→ X, where (X, d) is a metric space with a partial
ordering. The uniqueness of the coupled common fixed point is ensured by
imposing, amongst other conditions, the condition of coincidentally commuting,
a concept which we introduce here. Our result extends some results in [13, 19].
Two supporting examples are given.

2. Mathematical Preliminaries

Let (X, �) be a partially ordered set and F : X −→ X. The mapping F is
said to be nondecreasing if for all x1, x2 ∈ X, x1 � x2 implies F (x1) � F (x2)
and nonincreasing if for all x1, x2 ∈ X, x1 � x2 implies F (x1) � F (x2).

Definition 2.1 ([13]). Let (X,�) be a partially ordered set and F : X×X −→
X. The mapping F is said to have the mixed monotone property if F is monotone
nondecreasing in its first argument and is monotone nonincreasing in its second
argument; that is, if
x1, x2 ∈ X, x1 � x2 =⇒ F (x1, y) � F (x2, y), for all y ∈ X

and
y1, y2 ∈ X, y1 � y2 =⇒ F (x, y1) � F (x, y2), for all x ∈ X.

Definition 2.2 ([18]). Let (X,�) be a partially ordered set and F : X×X −→
X and g : X −→ X. We say F has the mixed g- monotone property if
x1, x2 ∈ X, gx1 � gx2 =⇒ F (x1, y) � F (x2, y), for all y ∈ X

and
y1, y2 ∈ X, gy1 � gy2 =⇒ F (x, y1) � F (x, y2), for all x ∈ X.

Definition 2.3 ([13]). Let X be a non-empty set and F : X × X −→ X. An
element (x, y) ∈ X × X is called a coupled fixed point of the mapping F if
x = F (x, y) and y = F (y, x).

Definition 2.4 ([18]). Let X be a non-empty set and g : X −→ X and F :
X×X −→ X. An element (x, y) ∈ X×X is called a coupled coincidence point
of the mappings g and F if gx = F (x, y) and gy = F (y, x).

Definition 2.5 ([18]). Let X be a non-empty set and g : X −→ X and F :
X × X −→ X. An element (x, y) ∈ X × X is called a coupled common fixed
point of the mappings g and F if x = gx = F (x, y) and y = gy = F (y, x).

Definition 2.6 ([7]). Let X be a non-empty set and g : X −→ X and F :
X ×X −→ X. We say g and F are compatible if

lim
n→∞

d
(
gF (xn, yn), F (gxn, gyn)

)
= 0 and lim

n→∞
d
(
gF (yn, xn), F (gyn, gxn)

)
= 0
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, whenever {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) =

lim
n→∞

gxn = x and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y, for some x, y ∈ X are

satisfied.

We define coincidentally commuting mapping in the following.

Definition 2.7. The mappings g and F , where g : X −→ X and F : X ×
X −→ X, are said to be coincidentally commuting if they commute at their
coupled coincidence points, that is, if gx = F (x, y) and gy = F (y, x), for some
(x, y) ∈ X ×X, then gF (x, y) = F (gx, gy) and gF (y, x) = F (gy, gx).

3. Main results

Theorem 3.1. Let (X, �) be a partially ordered set and d be a metric on X
such that (X, d) is a complete metric space. Suppose that F : X ×X → X and
g : X → X are two mappings such that F has the mixed g-monotone property
on X. Suppose that F is continuous, F (X ×X) ⊆ g(X), g is continuous non-
decreasing and the pair (F, g) is compatible. Further suppose that there exist
non-negative real numbers α and L with 0 ≤ α < 1 such that for all x, y, u, v ∈ X,
with gx � gu and gy � gv,

d
(
F (x, y), F (u, v)

)
≤ α max

{
d(gx, gu), d(gy, gv),

d(gx, F (x, y))
(

1 + d(gu, F (u, v))
)

1 + d(gx, gu)
,

d(gx, F (u, v))
(

1 + d(gu, F (x, y))
)

1 + d(gx, gu)
,

d(gy, F (y, x))
(

1 + d(gv, F (v, u))
)

1 + d(gy, gv)
,

d(gy, F (v, u))
(

1 + d(gv, F (y, x))
)

1 + d(gy, gv)

}
+L min

{
d(F (x, y), gu), d(F (u, v), gx), d(F (x, y), gx), d(F (u, v), gu)

}
.

(1)

If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then
F and g have a coupled coincidence point in X, that is, there exist x, y ∈ X such
that gx = F (x, y) and gy = F (y, x).

Proof. Let x0, y0 ∈ X be such that gx0 � F (x0, y0) and gy0 � F (y0, x0).
Since F (X ×X) ⊆ g(X), we can construct sequences {xn} and {yn} in X such
that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn), for all n ≥ 0. (2)
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We claim that for all n ≥ 0,

gxn � gxn+1 (3)

and

gyn � gyn+1. (4)

Since gx0 � F (x0, y0) and gy0 � F (y0, x0), it follows by (2) that gx0 �
F (x0, y0) = gx1 and gy0 � F (y0, x0) = gy1, that is, (3) and (4) hold for n = 0.
Suppose that (3) and (4) hold for some n > 0. As F has the mixed g-monotone
property and gxn � gxn+1 and gyn � gyn+1, from (2), we get

gxn+1 = F (xn, yn) � F (xn+1, yn) � F (xn+1, yn+1) = gxn+2 (5)

and

gyn+1 = F (yn, xn) � F (yn+1, xn) � F (yn+1, xn+1) = gyn+2. (6)

Therefore, we obtain that gxn+1 � gxn+2 and gyn+1 � gyn+2. Thus by the
mathematical induction, we conclude that (3) and (4) hold for all n ≥ 0. There-
fore,

gx0 � gx1 � gx2 � ... � gxn � gxn+1 � .... (7)

and

gy0 � gy1 � gy2 � ... � gyn � gyn+1 � .... (8)

Since gxn � gxn−1 and gyn � gyn−1 for all n ≥ 1, applying (1) and using (2),
we have

d(gxn+1, gxn) = d
(
F (xn, yn), F (xn−1, yn−1)

)
≤ α max

{
d(gxn, gxn−1), d(gyn, gyn−1),

d(gxn, F (xn, yn))
(

1 + d(gxn−1, F (xn−1, yn−1))
)

1 + d(gxn, gxn−1)
,

d(gxn, F (xn−1, yn−1))
(

1 + d(gxn−1, F (xn, yn))
)

1 + d(gxn, gxn−1)
,

d(gyn, F (yn, xn))
(

1 + d(gyn−1, F (yn−1, xn−1))
)

1 + d(gyn, gyn−1)
,

d(gyn, F (yn−1, xn−1))
(

1 + d(gyn−1, F (yn, xn))
)

1 + d(gyn, gyn−1)

}
+ L min

{
d(F (xn, yn), gxn−1), d(F (xn−1, yn−1), gxn),

d(F (xn, yn), gxn), d(F (xn−1, yn−1), gxn−1)
}

≤ α max
{
d(gxn, gxn−1), d(gyn, gyn−1),

d(gxn, gxn+1)
(

1 + d(gxn−1, gxn)
)

1 + d(gxn, gxn−1)
,
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d(gxn, gxn)
(

1 + d(gxn−1, gxn+1)
)

1 + d(gxn, gxn−1)
,

d(gyn, gyn+1)
(

1 + d(gyn−1, gyn)
)

1 + d(gyn, gyn−1)
,

d(gyn, gyn)
(

1 + d(gyn−1, gyn+1)
)

1 + d(gyn, gyn−1)

}
+L min

{
d(gxn+1, gxn−1), d(gxn, gxn), d(gxn+1, gxn), d(gxn, gxn−1)

}
≤ αmax

{
d(gxn, gxn−1), d(gyn, gyn−1), d(gxn, gxn+1), d(gyn, gyn+1)

}
,

that is,

d(gxn+1, gxn) ≤ αmax
{
d(gxn, gxn−1), d(gyn, gyn−1), d(gxn, gxn+1), d(gyn, gyn+1)

}
.

Similarly, we can prove that

d(gyn+1, gyn) ≤ αmax
{
d(gxn, gxn−1), d(gyn, gyn−1), d(gxn, gxn+1), d(gyn, gyn+1)

}
.

Set ρn = max
{
d(gxn+1, gxn), d(gyn+1, gyn)

}
.

So

ρn = max
{
d(gxn+1, gxn), d(gyn+1, gyn)

}
≤ α max

{
d(gxn, gxn−1), d(gyn, gyn−1)

}
= α ρn−1.

By mathematical induction, we have

ρn = max
{
d(gxn+1, gxn), d(gyn+1, gyn)

}
≤ αnρ0,

which implies that

d(gxn+1, gxn) ≤ αnρ0 and d(gyn+1, gyn) ≤ αnρ0.

Then for each m,n ∈ N with m < n,

d(gxm, gxn) ≤ d(gxm, gxm+1) + d(gxm+1, gxm+2) + ...+ d(gxn−1, gxn)

≤ (αm + αm+1 + ...+ αn−1) ρ0

≤ αm

1− α
ρ0 → 0 as m,n→∞,

and

d(gym, gyn) ≤ d(gym, gym+1) + d(gym+1, gym+2) + ...+ d(gyn−1, gyn)

≤ (αm + αm+1 + ...+ αn−1) ρ0

≤ αm

1− α
ρ0 → 0 as m,n→∞.
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Hence, {gxn} and {gyn} are Cauchy sequences. Since X is a complete metric
space, there exists x, y ∈ X such that gxn → x and gyn → y. Since g is
continuous, we have

g(gxn)→ gx and g(gyn)→ gy. (9)

Since F and g are compatible mappings, we have

d
(
gF (xn, yn), F (gxn, gyn)

)
= 0 (10)

and

d
(
gF (yn, xn), F (gyn, gxn)

)
= 0. (11)

Next we prove that gx = F (x, y) and gy = F (y, x).
For all n ≥ 0, we have

d
(
gx, F (gxn, gyn)

)
≤ d

(
gx, gF (xn, yn)

)
+ d
(
gF (xn, yn), F (gxn, gyn)

)
≤ d

(
gx, g(gxn+1)

)
+ d
(
gF (xn, yn), F (gxn, gyn)

)
.

(12)

Taking n→∞ in the above inequality, using (9), (10) and the continuities of F
and g, we have d(gx, F (x, y)) = 0, that is, gx = F (x, y). Similarly, we have
d(gy, F (y, x)) = 0, that is, gy = F (y, x). Hence (x, y) is a coupled coincidence
point of F and g. �

Now, we shall prove the existence and uniqueness of a coupled common fixed
point. Note that if (X, �) is a partially ordered set, the product space X ×X
has the following partial order relation:

for (x, y), (u, v) ∈ X ×X, (u, v) � (x, y) which implies that x � u, y � v.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for
every (x, y), (x∗, y∗) ∈ X × X there exists a (u, v) ∈ X × X such that(
F (u, v), F (v, u)

)
is comparable to

(
F (x, y), F (y, x)

)
and

(
F (x∗, y∗), F (y∗, x∗)

)
and also the pair functions (g, F ) is coincidentally commuting. Then F and g
have a unique coupled common fixed point, that is, there exist a unique (x, y) ∈
X ×X such that x = gx = F (x, y) and y = gy = F (y, x).

Proof. From Theorem 3.1, the set of coupled coincidence points of F and g is
non-empty. Suppose (x, y) and (x∗, y∗) are coupled coincidence points of F and
g, that is, gx = F (x, y), gy = F (y, x) and gx∗ = F (x∗, y∗), gy∗ = F (y∗, x∗).
Now, we show

gx = gx∗ and gy = gy∗. (13)

By the assumption, there exists (u, v) ∈ X×X such that
(
F (u, v), F (v, u)

)
is

comparable with
(
F (x, y), F (y, x)

)
and

(
F (x∗, y∗), F (y∗, x∗)

)
. Put u0 = u,

v0 = v. Since F (X × X) ⊆ g(X), we choose u1, v1 ∈ X so that gu1 =
F (u0, v0) and gv1 = F (v0, u0). Similarly as in the proof of Theorem 3.1, we can
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inductively define two sequences {gun} and {gvn} where gun+1 = F (un, vn)

and gvn+1 = F (vn, un), for all n ≥ 0. Hence
(
F (x, y), F (y, x)

)
= (gx, gy)

and
(
F (u, v), F (v, u)

)
= (gu1, gv1) are comparable. Suppose that (gx, gy) �

(gu1, gv1) (the proof is similar in other cases).
We claim that (gx, gy) � (gun, gvn), for each n ∈ N.

In fact, we will use mathematical induction. Since (gx, gy) � (gu1, gv1), our
claim is true for n = 1. We assume that (gx, gy) � (gun, gvn) holds for some
n > 1. Then gx � gun and gy � gvn. Using the mixed g-monotone property of
F , we get

gun+1 = F (un, vn) � F (x, vn) � F (x, y) = gx

and

gvn+1 = F (vn, un) � F (y, un) � F (y, x) = gy

and these proves our claim.
Since gx � gun and gy � gvn, applying (1), we have

d(gx, gun+1) = d
(
F (x, y), F (un, vn)

)
≤ α max

{
d(gx, gun), d(gy, gvn),

d(gx, F (x, y))
(

1 + d(gun, F (un, vn))
)

1 + d(gx, gun)
,

d(gx, F (un, vn))
(

1 + d(gun, F (x, y))
)

1 + d(gx, gun)
,

d(gy, F (y, x))
(

1 + d(gvn, F (un, vn))
)

1 + d(gy, gvn)
,

d(gy, F (vn, un))
(

1 + d(gvn, F (y, x))
)

1 + d(gy, gvn)

}
+ L min

{
d(F (x, y), gun), d(F (un, vn), gx),

d(F (x, y), gx), d(F (un, vn), gun)
}

≤ α max
{
d(gx, gun), d(gy, gvn),

d(gx, gun+1)
(

1 + d(gun, gx)
)

1 + d(gx, gun)
,

d(gy, gvn+1)
(

1 + d(gvn, gy)
)

1 + d(gy, gvn)

}
≤ α max

{
d(gx, gun), d(gy, gvn), d(gx, gun+1), d(gy, gvn+1)

}
.

Similarly, we can prove that

d(gy, gvn+1) ≤ α max
{
d(gx, gun), d(gy, gvn), d(gx, gun+1), d(gy, gvn+1)

}
.
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Hence

max
{
d(gx, gun+1), d(gy, gvn+1)

}
≤ α max

{
d(gx, gun), d(gy, gvn)

}
.

By mathematical induction, we have

max
{
d(gx, gun+1), d(gy, gvn+1)

}
≤ αn max

{
d(gx, gu1), d(gy, gv1)

}
,

that is,

d(gx, gun+1) ≤ αn max
{
d(gx, gu1), d(gy, gv1)

}
and

d(gy, gvn+1) ≤ αn max
{
d(gx, gu1), d(gy, gv1)

}
.

Taking the limit as n −→∞ in the above inequalities, we get

lim
n→∞

d(gx, gun+1) = 0 and lim
n→∞

d(gy, gvn+1) = 0. (14)

Similarly, we show that

lim
n→∞

d(gx∗, gun+1) = lim
n→∞

d(gy∗, gvn+1) = 0. (15)

By the triangle inequality, (14) and (15), we have

d(gx, gx∗) ≤
[
d(gx, gun+1) + d(gun+1, gx

∗)
]
−→ 0 as n −→∞,

and

d(gy, gy∗) ≤
[
d(gy, gvn+1) + d(gvn+1, gy

∗)
]
−→ 0 as n −→∞.

Hence gx = gx∗ and gy = gy∗. Thus we proved (13).
Since the pair (g, F ) is coincidentally commuting and gx = F (x, y) and gy =
F (y, x), we have

ggx = gF (x, y) = F (gx, gy) and ggy = gF (y, x) = F (gy, gx).

Denote gx = z and gy = w. Then, we have

gz = F (z, w) and gw = F (w, z). (16)

Thus (z, w) is a coupled coincidence point of F and g. Then from (13) with
x∗ = z and y∗ = w it follows gx = gz and gy = gw, that is,

gz = z and gw = w. (17)

From (16) and (17), we have that z = gz = F (z, w) and w = gw = F (w, z),
that is, (z, w) is a coupled common fixed point of F and g.

To prove the uniqueness, assume that (r, s) is another coupled common fixed
point of F and g, that is

r = gr = F (r, s) and s = gs = F (s, r).

Then by (13), we have r = gr = gz = z and s = gs = gw = w. Hence the
coupled common fixed point of F and g is unique. �



Coupled coincidence point results in partially ordered metric spaces 9

Example 3.3. Let X = [0, 1]. Then (X, ≤) is a partially ordered set with
the natural ordering of real numbers. Let d(x, y) = |x− y|, for x, y ∈ X. Let
g : X → X and F : X ×X → X be defined respectively as follows:

gx = x2, for all x ∈ X and F (x, y) =

 x2 − y2

4
, if x ≥ y,

0, if x ≤ y.
Let x0 = 0 and y0 = c(> 0) be two points in X. Then

g(x0) = g(0) = 0 = F (0, c) = F (x0, y0)

and

g(y0) = g(c) = c2 ≥ c2

3
= F (c, 0) = F (y0, x0).

Let α = 0.97 ∈ [0, 1) and L = 10.
It is verified that all the conditions of Theorem 3.1 are satisfied and (0, 0) ∈

X ×X is a coupled coincidence point of F and g. Further, (0, 0) ∈ X ×X is
the unique coupled common fixed point of F and g.

Example 3.4. Let X = R. Then (X, ≤) is a partially ordered set with the
natural ordering of real numbers. Let d(x, y) = |x− y|, for x, y ∈ X. Let
g : X → X and F : X ×X → X be defined respectively as follows:

gx =
5

6
x, for all x ∈ X and F (x, y) =

x− 2y

4
, for all x, y ∈ X.

Let x0 = −3 and y0 = 3. Then gx0 � F (x0, y0) and gy0 � F (y0, x0). Let
α = 0.7 ∈ [0, 1) and L = 10. It is verified that all the conditions of Theorem
3.1 are satisfied and (0, 0) ∈ X ×X is a coupled coincidence point of F and g.
Further, (0, 0) ∈ X ×X is the unique coupled common fixed point of F and g.
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