DOI QR코드

DOI QR Code

소형화된 헬름홀츠 공진기를 이용한 수중 반향음 감소해석 모의실험

Simulation of underwater echo reduction using miniaturized Helmholtz resonators

  • 박성준 (홍익대학교 기계시스템디자인공학과) ;
  • 김제도 (홍익대학교 기계시스템디자인공학과)
  • 투고 : 2018.11.06
  • 심사 : 2019.01.25
  • 발행 : 2019.01.31

초록

본 연구에서는 파장보다 작은 구조물로 이루어진 음향메타물질을 이용하여 소형화된 헬름홀츠 공진기의 반향음 감소 성능예측 연구를 진행하였다. 본 논문에서 제안된 헬름홀츠 공진기는 수중 환경과 임피던스 차이가 큰 공기구조물로 형성하였다. 다중물리 유한요소 시뮬레이션 패키지를 이용하여 수중 음향학적 분석을 진행한 결과 수중 반향음의 감소가 예상되었고 헬름홀츠 공진기 입구의 공간 압축(space coiling) 정도와 내부 체적의 폭에 따라 주파수 특성을 제어할 수 있었다. 기본적인 헬름홀츠 공진기는 약 10,000 Hz 이상에서 최대 7 dB의 반향음 감소 효과를 보였으나 공간 압축 메타물질을 이용한 초소형 헬름홀츠 공진기는 약 5,000 Hz 이상에서 최대 14 dB의 반향음 감소가 나타났다. 추가적으로 헬름홀츠 공진기의 내부 체적을 제어하여 주파수 특성이 변화하는 것을 확인하고 공간압축 비율이 서로 다른 공진기를 조합함으로써 광대역 반향음 감소 효과를 얻을 수 있었다. 본 연구를 통해 수중 환경에서 공기구조물을 이용한 소형화된 헬름홀츠 공진기의 성능을 연구하였으며 반향음 감소 효과는 효과적인 스텔스 기술을 구현할 수 있을 것으로 기대된다.

In this study, we investigate the echo reduction performance of miniaturinzed Helmholtz resonators using smaller than wavelength acoustic metamaterial structures. The Helmholtz resonators are formed using air structures which exhibit large impedance mismatch with the surrounding underwater environment. Using the multi-physics software package, we find that significant reduction in the sonar signature is expected and frequency tailoring is possible by controlling the degree of space coiling and inner volume of the resonators. We find that for the basic Helmholtz resonators, up to 7 dB reduction in echo is expected at 10,000 Hz while when the miniaturized Helmoholtz resonators are used, up to 14 dB reduction in echo is expected at 5,000 Hz. In addition, frequency tailoring is demonstrated by varying the internal volume of the Helmholtz resonators and broadband characteristic is shown using superposition of various degree of space coiled structures. Through this study we investigate the effectiveness of the miniaturized Helmholtz resonators formed using air structures and the echo reduction results show promisses in the application of achieving underwater stealth.

키워드

GOHHBH_2019_v38n1_67_f0001.png 이미지

Fig. 1. Conceptual diagram of the miniaturized Helmholtzr esonator applied on the submarine hull.

GOHHBH_2019_v38n1_67_f0002.png 이미지

Fig. 2. The 2D simulation model of the underwater Helmholtz resonators. (a) the basic Helmholtz resonator model. (b), (c) miniaturized Helmholtz resonator models using various degree of space coiling acoustic metamaterial.

GOHHBH_2019_v38n1_67_f0003.png 이미지

Fig. 3. Comparison of the echo reduction between (a)model 1, (b) model 2, and (c) model 3.

GOHHBH_2019_v38n1_67_f0004.png 이미지

Fig. 4. Comparison of the acoustic pressure field between (a) model 1 at 10101 Hz , (b) model 2 at 9251 Hz, and (c) model 3 at 8601 Hz.

GOHHBH_2019_v38n1_67_f0005.png 이미지

Fig. 5. Comparison of the echo reduction between (a) w = 20, (b) w = 25 for model 3.

GOHHBH_2019_v38n1_67_f0006.png 이미지

Fig. 6. The simulation model of the Helmholtz resonator that combines model 3 and scale unit which is changed the model 3’s entrance width of 5 cm.

GOHHBH_2019_v38n1_67_f0007.png 이미지

Fig. 7. Comparison of the echo reduction between (a) model 3, (b) model 4.

Table 1. Dimensions of the simulation model.

GOHHBH_2019_v38n1_67_t0001.png 이미지

Table 2. Material properties of the structure (Air) and the medium (Water) used in this study.

GOHHBH_2019_v38n1_67_t0002.png 이미지

Table 3. Boundary conditions used in this study.

GOHHBH_2019_v38n1_67_t0003.png 이미지

참고문헌

  1. J. L. Wallace, "Broadband magnetic microwave absorbers: fundamental limitations," IEEE Transactions on Magnetics, 29, 4209-4214 (1993). https://doi.org/10.1109/20.280862
  2. D. J. Kern and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters, 38, 61-64 (2003). https://doi.org/10.1002/mop.10971
  3. F. Yue-Nong, C. Yong-Zhi, D. Yan-Ming, and G. Rong-Zhou, "Absorbing performance of ultrathin wideband planar metamaterial absorber," ISAPE2012, 672-676 (2012).
  4. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," Appl Phys A, 102, 99-103 (2011). https://doi.org/10.1007/s00339-010-6022-4
  5. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D : Appl. Phys, 43, 225102-225106 (2010). https://doi.org/10.1088/0022-3727/43/22/225102
  6. S. Hottori and N. Mikami, "Cavitation erosion resistance of stellite alloy weld overlays," Wear, 267, 1954-1960 (2009). https://doi.org/10.1016/j.wear.2009.05.007
  7. A. Vrijdag, D. Stapersma, and T. van Terwisga, "Control of propeller cavitation in operational conditions", J. Marine Engineering & Technology, 9, 15-26 (2010). https://doi.org/10.1080/20464177.2010.11020228
  8. Y. H. YU, "A Study on the development of a resonator to reduce the ship engine room noise" (in Korean), Korean Society for Power System Engineering, 11, 73-77 (2007).
  9. H. -W. Kwon, S. -Y. Hong, H. -M. Kim, and J. -H. Song, "Analysis of acoustic target strength for the submarine with alberich anechoic coating effects" (in Korean), J. the Korean Society of Marine Environment & Safety, 19, 410-415 (2013). https://doi.org/10.7837/kosomes.2013.19.4.410
  10. H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, San Diego, 1998), Chap. 1.
  11. K. Song, K. Kim, S. Hur, J. -H. Kwak, J. Park, J. R. Yoon, and J. Kim, "Sound pressure level gain in an acoustic metamaterial cavity" (in Korean), Scientific Reports, 4, 1-6 (2014).
  12. K. Song, S.-H. Lee, K. Kim, S. Hur, and J. Kim, "Emission enhancement of sound emitters using an acoustic metamaterial cavity," Scientific Reports, 4, 1-6 (2014).
  13. S. J. Park, K. Song, and J. Kim, "Sound blocking using acoustic metamaterial scaling" (in Korean), J. Acoust. Soc. Kr. 34, 371-376 (2015). https://doi.org/10.7776/ASK.2015.34.5.371
  14. COMSOL Multiphysics(R), COMSOL AB, Stockholm, Sweden, version 5.3., 2018.
  15. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, New York, 2000), Chap. 10.