References
- Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, et al. 2014. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8: 10682-10686. https://doi.org/10.1021/nn5042625
- Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, et al. 2017. Pharmaceutical Intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via electrospun scaffold. ACS Nano 11: 5737-5745. https://doi.org/10.1021/acsnano.7b01240
- Maincent P, Le Verge R, Sado P, Couvreur P, Devissaguet J-P. 1986. Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J. Pharm. Sci. 75: 955-958. https://doi.org/10.1002/jps.2600751009
- Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA. 2016. Gold nanoparticle conjugation enhances the antiacanthamoebic effects of chlorhexidine. Antimicrob. Agents Chemother. 60: 1283-1288. https://doi.org/10.1128/AAC.01123-15
- Grace AN, Pandian K. 2007. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-A brief study. Colloids Surfaces A: Physicochem. Eng. Aspects. 297: 63-70. https://doi.org/10.1016/j.colsurfa.2006.10.024
- Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. 2012. Nanoparticles as drug delivery systems. Pharmacol. Rep. 64: 1020-1037. https://doi.org/10.1016/S1734-1140(12)70901-5
- Martinez A, Visvesvara G. 1991. Laboratory diagnosis of pathogenic free-living amoebas: Naegleria, Acanthamoeba, and Leptomyxid. Clin. Lab Med. 11: 861-872. https://doi.org/10.1016/S0272-2712(18)30524-9
- Marciano-Cabral F, Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16: 273-307. https://doi.org/10.1128/CMR.16.2.273-307.2003
- Khan NA. 2006. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol. Rev. 30: 564-595. https://doi.org/10.1111/j.1574-6976.2006.00023.x
- Seal D, Hay J, Kirkness C. 1995. Chlorhexidine or polyhexamethylene biguanide for Acanthamoeba keratitis. Lancet 345: 136. https://doi.org/10.1016/S0140-6736(95)90106-X
- Ishibashi Y, Matsumoto Y, Kabata T, Watanabe R, Hommura S, Yasuraoka K, et al. 1990. Oral itraconazole and topical miconazole with debridement for Acanthamoeba keratitis. Am. J. Ophthalmol. 109: 121-126. https://doi.org/10.1016/S0002-9394(14)75974-4
- Visvesvara GS, Moura H, Schuster FL. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 50: 1-26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
- Girois S, Chapuis F, Decullier E, Revol B. 2005. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 24: 119-130. https://doi.org/10.1007/s10096-005-1281-2
- Martin-Navarro CM, Lopez-Arencibia A, Sifaoui I, Reyes-Batlle M, Valladares B, Martinez-Carretero E, et al. 2015. Statins and voriconazole induce programmed cell death in Acanthamoeba castellanii. Antimicrob. Agents Chemother. 59: 2817-2824. https://doi.org/10.1128/AAC.00066-15
-
Thomson S, Rice CA, Zhang T, Edrada-Ebel R, Henriquez FL, Roberts CW. 2017. Characterisation of sterol biosynthesis and validation of
$14{\alpha}$ -demethylase as a drug target in Acanthamoeba. Sci. Rep. 7: 8247. https://doi.org/10.1038/s41598-017-07495-z - Anwar A, Siddiqui R, Hussain MA, Ahmed D, Shah MR, Khan NA. 2018. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitol. Res. 117: 265-271. https://doi.org/10.1007/s00436-017-5701-x
- Anwar A, Shah MR, Muhammad SP, Afridi S, Ali K. 2016. Thiopyridinium capped silver nanoparticle based supramolecular recognition of Cu (I) in real samples and T-lymphocytes. New J. Chem. 40: 6480-6486. https://doi.org/10.1039/C5NJ03609G
- Sissons J, Alsam S, Stins M, Rivas AO, Morales JL, Faull J, et al. 2006. Use of in vitro assays to determine effects of human serum on biological characteristics of Acanthamoeba castellanii. J. Clin. Microbiol. 44: 2595-2600. https://doi.org/10.1128/JCM.00144-06
- Khan NA, Siddiqui R. 2009. Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. Int. J. Parasitol. 39: 1611-1616. https://doi.org/10.1016/j.ijpara.2009.06.004
- Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, et al. 2017. Identification and characterization of antibacterial compound (s) of cockroaches (Periplaneta americana). Appl. Microbiol. Biotechnol. 101: 253-286. https://doi.org/10.1007/s00253-016-7872-2
- Radwan MA, AlQuadeib BT, Siller L, Wright MC, Horrocks B. 2017. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 24: 40-50. https://doi.org/10.1080/10717544.2016.1228715
- Rodino S, Butu M, Negoescu C, Caunii A, Cristina R, Butnariu M. 2014. Spectrophotometric method for quantitative determination of nystatin antifungal agent in pharmaceutical formulations. Digest J. Nanomater. Biostruc. 9: 1215-1222.
- Singh A, Sharma P, Majumdar D. 2011. Development and validation of different UV-spectrophotometric methods for the estimation of fluconazole in bulk and in solid dosage form. Indian J. Chem. Technol. 18: 357-362.
- Suri SS, Fenniri H, Singh B. 2007. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2: 16. https://doi.org/10.1186/1745-6673-2-16
- Walsh M D, Hanna S K, S en J , Rawal S, C abral CB , Yurkovetskiy AV, et al. 2012. Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts. Clin. Cancer Res. 18: 2591-2602. https://doi.org/10.1158/1078-0432.CCR-11-1554
- Zazo H, Colino CI, Lanao JM. 2016. Current applications of nanoparticles in infectious diseases. J. Control Release. 224: 86-102. https://doi.org/10.1016/j.jconrel.2016.01.008
- Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA. 2017. Size selectivity in antibiofilm activity of 3-(diphenylphosphino) propanoic acid coated gold nanomaterials against Gram-positive Staphylococcus aureus and Streptococcus mutans. AMB Express 7: 210. https://doi.org/10.1186/s13568-017-0515-x
- Dakal TC, Kumar A, Majumdar RS, Yadav V. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 7: 1831.
- Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720. https://doi.org/10.1128/AEM.02218-06
- Zhao G, Stevens SE. 1998. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11: 27-32. https://doi.org/10.1023/A:1009253223055
Cited by
- Antidiabetic Drugs and Their Nanoconjugates Repurposed as Novel Antimicrobial Agents against Acanthamoeba castellanii vol.29, pp.5, 2019, https://doi.org/10.4014/jmb.1903.03009
- Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited] vol.10, pp.7, 2019, https://doi.org/10.1364/boe.10.003152
- Acanthamoeba in Southeast Asia - Overview and Challenges vol.57, pp.4, 2019, https://doi.org/10.3347/kjp.2019.57.4.341
- Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-52738-w
- Repositioning of Guanabenz in Conjugation with Gold and Silver Nanoparticles against Pathogenic Amoebae Acanthamoeba castellanii and Naegleria fowleri vol.5, pp.12, 2019, https://doi.org/10.1021/acsinfecdis.9b00263
- Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology vol.2020, 2020, https://doi.org/10.1155/2020/5616379
- Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis vol.9, pp.5, 2019, https://doi.org/10.3390/pathogens9050350
- Synthesis of Thiol Derivatives of Biological Active Compounds for Nanotechnology Application vol.25, pp.15, 2020, https://doi.org/10.3390/molecules25153470
- Repurposing of Drugs Is a Viable Approach to Develop Therapeutic Strategies against Central Nervous System Related Pathogenic Amoebae vol.11, pp.16, 2020, https://doi.org/10.1021/acschemneuro.9b00613
- Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype vol.10, pp.1, 2019, https://doi.org/10.1186/s13568-020-01061-z
- Rod-shaped gold nanoparticles exert potent candidacidal activity and decrease the adhesion of fungal cells vol.15, pp.28, 2019, https://doi.org/10.2217/nnm-2020-0324
- Toxicity of gold nanoparticles (AuNPs): A review vol.26, 2019, https://doi.org/10.1016/j.bbrep.2021.100991
- Acanthamoeba Keratitis: an update on amebicidal and cysticidal drug screening methodologies and potential treatment with azole drugs vol.19, pp.11, 2019, https://doi.org/10.1080/14787210.2021.1924673