DOI QR코드

DOI QR Code

Simple and Novel Assay of the Host-Guest Complexation of Homocysteine with Cucurbit[7]uril

  • Park, Se-Ho (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Lee, Jae-Yeul (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Cho, Hyun-Nam (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Kyoung-Ran (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Yang, Seun-Ah (Department of Food Science and Technology, Keimyung University) ;
  • Kim, Hee-Joon (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Received : 2018.11.20
  • Accepted : 2018.11.27
  • Published : 2019.01.28

Abstract

This paper introduces three ways to determine host-guest complexation of cucurbit[7]uril (CB[7]) with homocysteine (Hcy). After preincubating Hcy and cysteine (Cys) with CB[7], Ellman's reagent (DTNB) was used to detect Hcy and Cys. Only Cys reacted with DTNB and Hcy gave a retarded color change. This suggests that the -SH group of Hcy is buried inside CB[7]. Human cystathionine ${\gamma}-lyase$ (hCGL) decreased the level of Hcy degradation after preincubating Hcy and CB[7]. These results suggest that the amount of free Hcy available was decreased by the formation of a Hcy-CB[7] complex. The immunological signal of anti-Hcy monoclonal antibody was decreased significantly by preincubating CB[7] with Hcy. The ELISA results also show that ethanethiol group ($-CH_2CH_2SH$) of Hcy, which is an epitope of anti-Hcy monoclonal antibody, was blocked by the cavity in CB[7]. Overall, CB[7] can act as a host by binding selectively with Hcy, but not Cys. The calculated half-complexation formation concentration of CB[7] was 58.2 nmol using Ellman's protocol, 97.9 nmol using hCGL assay and 87.7 nmol using monoclonal antibody. The differing binding abilities of Hcy and Cys towards the CB[7] host may offer a simple and useful method for determining the Hcy concentration in plasma or serum.

Keywords

Acknowledgement

Supported by : Kumoh National Institute of Technology

References

  1. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 1998. Vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55: 1449-1455. https://doi.org/10.1001/archneur.55.11.1449
  2. Nygard O, Vollset SE, Refsum H, Stensvold I, Tverdal A, nordrehaug JE, et al. 1995. Total plasma homocysteine and cardiovascular risk profile: the Hordaland homocysteine study. JAMA 274: 1526-1533. https://doi.org/10.1001/jama.1995.03530190040032
  3. Ueland PM, Refsum H, Beresford SA, Vollset SE. 2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72: 324-332. https://doi.org/10.1093/ajcn/72.2.324
  4. Ozkan Y, Ozkan E, Simsek B. 2002. Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. Int. J. Cardiol. 82: 269-277. https://doi.org/10.1016/S0167-5273(02)00010-4
  5. Finkelstein J. 1998. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 157: S40-S44. https://doi.org/10.1007/PL00014300
  6. Selhub J, Miller JW. 1992. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am. J. Clin. Nutr. 55: 131-138. https://doi.org/10.1093/ajcn/55.1.131
  7. Cho H-N, Jhee K-H. 2014. Direct conversion of L-selenomethionine into methylselenol by human cystathionine ${\gamma}$-lyase. Microbiol. Biotechnol. Lett. 42: 11-17. https://doi.org/10.4014/kjmb.1312.12005
  8. Blom HJ, Smulders Y. 2011. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defect. J. Inherit. Metab. Dis. 34: 75-81. https://doi.org/10.1007/s10545-010-9177-4
  9. Chen X, Jhee K-H, Kruger WD. 2004. Production of the neuromodulator $H_2S$ by cystathionine ${\beta}$-synthase via the condensation of cysteine and homocysteine. J. Biol. Chem. 279: 52082-52086. https://doi.org/10.1074/jbc.C400481200
  10. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. 2008. $H_2S$ as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine ${\gamma}$-lyase. Science 322: 587-590. https://doi.org/10.1126/science.1162667
  11. Kim K-R, Byun H-J, Cho H-N, Kim J-H, Yang S-A, Jhee K-H. 2011. Overexpression and activity analysis of cystathionine ${\gamma}$-lyase responsible for the biogenesis of $H_2S$ neurotransmitter. J. Life Sci. 21: 119-126. https://doi.org/10.5352/JLS.2011.21.1.119
  12. Inoue T, Kirchhorff JR. 2002. Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 74: 1349-1354. https://doi.org/10.1021/ac0108515
  13. Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al. 2005. Detection of homocysteine and cysteine. J. Am. Chem. Soc. 127: 15949-15958. https://doi.org/10.1021/ja054962n
  14. Rusin O, St. Luce NN, Agbaria RA, Escobedo JO, Jiang S, Warner IM, et al. 2004. Visual detection of cysteine and homocysteine. J. Am. Chem. Soc. 126: 438-439. https://doi.org/10.1021/ja036297t
  15. Wang J, Liu Y, Jiang M, Li Y, Xia L, Wu P. 2018. Aldehyde-functionalized metal-organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chem. Comm. 54: 1004-1007. https://doi.org/10.1039/C7CC08414E
  16. Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. 2015. Design strategies of fluorescent probes for selective detection among biothiols. Chem. Soc. Rev. 44: 6143-6160. https://doi.org/10.1039/C5CS00152H
  17. Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, Bo Q. 2017. A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173: 918-923. https://doi.org/10.1016/j.saa.2016.10.060
  18. Wang W, Li L, Liu S, Ma C, Zhang S. 2008. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J. Am. Chem. Soc. 130: 10846-10847. https://doi.org/10.1021/ja802273p
  19. Li J, Loh XJ. 2008. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev. 60: 1000-1017. https://doi.org/10.1016/j.addr.2008.02.011
  20. Busschaert N, Caltagirone C, Van Rossom W, Gale PA. 2015. Applications of supramolecular anion recognition. Chem. Rev. 115: 8038-8155. https://doi.org/10.1021/acs.chemrev.5b00099
  21. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. 2015. Cucurbituril-based molecular recognition. Chem. Rev. 115: 12320-12406. https://doi.org/10.1021/acs.chemrev.5b00341
  22. Biedermann F, Nau WM. 2014. Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Edit. 53: 5694-5699. https://doi.org/10.1002/anie.201400718
  23. Gao Z-Z, Lin R-L, Bai D, Tao Z, Liu J-X, Xiao X. 2017. Host-guest complexation of cucurbit[8]uril with two enantiomers. Sci. Rep. 7: 44717. https://doi.org/10.1038/srep44717
  24. Freeman W, Mock W, Shih N. 1981. Cucurbituril. J. Am. Chem. Soc. 103: 7367-7368. https://doi.org/10.1021/ja00414a070
  25. Masson E, Ling X. Joseph R. Kyeremeh-Mensah L, Lu X. 2012. Cucurbituril chemistry: a tale of supramolecular success. Rsc Advances. 2: 1213-1247. https://doi.org/10.1039/C1RA00768H
  26. Urbach AR. Ramalingam V. 2011. Molecular recognition of amino acids, peptides, and proteins by cucurbit [n] uril receptors. Israel J. Chem. 51: 664-678. https://doi.org/10.1002/ijch.201100035
  27. Reisz JA, Bechtold E, King SB, Poole LB, Furdui CM. 2013. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J. 280: 6150-6161. https://doi.org/10.1111/febs.12535
  28. Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan C-H, et al. 2009. Structural basis for the inhibition mechanism of human cystathionine ${\gamma}$-lyase, an enzyme responsible for the production of $H_2S$. J. Biol. Chem. 284: 3076-3085. https://doi.org/10.1074/jbc.M805459200
  29. Kishiro Y, Kagawa M, Naito I, Sado Y. 1995. A novel method of preparing rat-monoclonal antibody-producing hybridomas by using rat medial iliac lymph node cells. Cell Struct. Funct. 20: 151-156. https://doi.org/10.1247/csf.20.151
  30. Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophy. 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  31. Okonjo KO, Fodeke AA. 2006. Reversible reaction of 5, 5'-dithiobis (2-nitrobenzoate) with the hemoglobins of the domestic cat: acetylation of $NH_3{^+}$ terminal group of the ${\beta}$ chain transforms the complex pH dependence of the forward apparent second order rate constant to a simple form. Biophy. Chem. 119: 196-204. https://doi.org/10.1016/j.bpc.2005.09.009
  32. Jhee K-H, McPhie P, Miles EW. 2000. Domain architecture of the heme-independent yeast cystathionine ${\beta}$-synthase provides insights into mechanisms of catalysis and regulation. Biochem. 39: 10548-10556. https://doi.org/10.1021/bi001020g
  33. Karlsson R, Michaelsson A, Mattsson L. 1991. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytic system. J. Immunol. Methods 145: 229-240. https://doi.org/10.1016/0022-1759(91)90331-9
  34. Thuery P. 2011. L-cysteine as a chiral linker in lanthanide-cucurbit [6] uril one-dimensional assemblies. Inorg. Chem. 50: 10558-10560. https://doi.org/10.1021/ic201965k

Cited by

  1. Supramolecular complexation of homocysteine and cysteine with cucurbit[7]uril vol.31, pp.6, 2019, https://doi.org/10.1080/10610278.2019.1593414