Acknowledgement
Supported by : Kumoh National Institute of Technology
References
- Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 1998. Vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55: 1449-1455. https://doi.org/10.1001/archneur.55.11.1449
- Nygard O, Vollset SE, Refsum H, Stensvold I, Tverdal A, nordrehaug JE, et al. 1995. Total plasma homocysteine and cardiovascular risk profile: the Hordaland homocysteine study. JAMA 274: 1526-1533. https://doi.org/10.1001/jama.1995.03530190040032
- Ueland PM, Refsum H, Beresford SA, Vollset SE. 2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72: 324-332. https://doi.org/10.1093/ajcn/72.2.324
- Ozkan Y, Ozkan E, Simsek B. 2002. Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. Int. J. Cardiol. 82: 269-277. https://doi.org/10.1016/S0167-5273(02)00010-4
- Finkelstein J. 1998. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 157: S40-S44. https://doi.org/10.1007/PL00014300
- Selhub J, Miller JW. 1992. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am. J. Clin. Nutr. 55: 131-138. https://doi.org/10.1093/ajcn/55.1.131
-
Cho H-N, Jhee K-H. 2014. Direct conversion of L-selenomethionine into methylselenol by human cystathionine
${\gamma}$ -lyase. Microbiol. Biotechnol. Lett. 42: 11-17. https://doi.org/10.4014/kjmb.1312.12005 - Blom HJ, Smulders Y. 2011. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defect. J. Inherit. Metab. Dis. 34: 75-81. https://doi.org/10.1007/s10545-010-9177-4
-
Chen X, Jhee K-H, Kruger WD. 2004. Production of the neuromodulator
$H_2S$ by cystathionine${\beta}$ -synthase via the condensation of cysteine and homocysteine. J. Biol. Chem. 279: 52082-52086. https://doi.org/10.1074/jbc.C400481200 -
Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. 2008.
$H_2S$ as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine${\gamma}$ -lyase. Science 322: 587-590. https://doi.org/10.1126/science.1162667 -
Kim K-R, Byun H-J, Cho H-N, Kim J-H, Yang S-A, Jhee K-H. 2011. Overexpression and activity analysis of cystathionine
${\gamma}$ -lyase responsible for the biogenesis of$H_2S$ neurotransmitter. J. Life Sci. 21: 119-126. https://doi.org/10.5352/JLS.2011.21.1.119 - Inoue T, Kirchhorff JR. 2002. Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 74: 1349-1354. https://doi.org/10.1021/ac0108515
- Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al. 2005. Detection of homocysteine and cysteine. J. Am. Chem. Soc. 127: 15949-15958. https://doi.org/10.1021/ja054962n
- Rusin O, St. Luce NN, Agbaria RA, Escobedo JO, Jiang S, Warner IM, et al. 2004. Visual detection of cysteine and homocysteine. J. Am. Chem. Soc. 126: 438-439. https://doi.org/10.1021/ja036297t
- Wang J, Liu Y, Jiang M, Li Y, Xia L, Wu P. 2018. Aldehyde-functionalized metal-organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chem. Comm. 54: 1004-1007. https://doi.org/10.1039/C7CC08414E
- Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. 2015. Design strategies of fluorescent probes for selective detection among biothiols. Chem. Soc. Rev. 44: 6143-6160. https://doi.org/10.1039/C5CS00152H
- Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, Bo Q. 2017. A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173: 918-923. https://doi.org/10.1016/j.saa.2016.10.060
- Wang W, Li L, Liu S, Ma C, Zhang S. 2008. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J. Am. Chem. Soc. 130: 10846-10847. https://doi.org/10.1021/ja802273p
- Li J, Loh XJ. 2008. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev. 60: 1000-1017. https://doi.org/10.1016/j.addr.2008.02.011
- Busschaert N, Caltagirone C, Van Rossom W, Gale PA. 2015. Applications of supramolecular anion recognition. Chem. Rev. 115: 8038-8155. https://doi.org/10.1021/acs.chemrev.5b00099
- Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. 2015. Cucurbituril-based molecular recognition. Chem. Rev. 115: 12320-12406. https://doi.org/10.1021/acs.chemrev.5b00341
- Biedermann F, Nau WM. 2014. Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Edit. 53: 5694-5699. https://doi.org/10.1002/anie.201400718
- Gao Z-Z, Lin R-L, Bai D, Tao Z, Liu J-X, Xiao X. 2017. Host-guest complexation of cucurbit[8]uril with two enantiomers. Sci. Rep. 7: 44717. https://doi.org/10.1038/srep44717
- Freeman W, Mock W, Shih N. 1981. Cucurbituril. J. Am. Chem. Soc. 103: 7367-7368. https://doi.org/10.1021/ja00414a070
- Masson E, Ling X. Joseph R. Kyeremeh-Mensah L, Lu X. 2012. Cucurbituril chemistry: a tale of supramolecular success. Rsc Advances. 2: 1213-1247. https://doi.org/10.1039/C1RA00768H
- Urbach AR. Ramalingam V. 2011. Molecular recognition of amino acids, peptides, and proteins by cucurbit [n] uril receptors. Israel J. Chem. 51: 664-678. https://doi.org/10.1002/ijch.201100035
- Reisz JA, Bechtold E, King SB, Poole LB, Furdui CM. 2013. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J. 280: 6150-6161. https://doi.org/10.1111/febs.12535
-
Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan C-H, et al. 2009. Structural basis for the inhibition mechanism of human cystathionine
${\gamma}$ -lyase, an enzyme responsible for the production of$H_2S$ . J. Biol. Chem. 284: 3076-3085. https://doi.org/10.1074/jbc.M805459200 - Kishiro Y, Kagawa M, Naito I, Sado Y. 1995. A novel method of preparing rat-monoclonal antibody-producing hybridomas by using rat medial iliac lymph node cells. Cell Struct. Funct. 20: 151-156. https://doi.org/10.1247/csf.20.151
- Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophy. 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
-
Okonjo KO, Fodeke AA. 2006. Reversible reaction of 5, 5'-dithiobis (2-nitrobenzoate) with the hemoglobins of the domestic cat: acetylation of
$NH_3{^+}$ terminal group of the${\beta}$ chain transforms the complex pH dependence of the forward apparent second order rate constant to a simple form. Biophy. Chem. 119: 196-204. https://doi.org/10.1016/j.bpc.2005.09.009 -
Jhee K-H, McPhie P, Miles EW. 2000. Domain architecture of the heme-independent yeast cystathionine
${\beta}$ -synthase provides insights into mechanisms of catalysis and regulation. Biochem. 39: 10548-10556. https://doi.org/10.1021/bi001020g - Karlsson R, Michaelsson A, Mattsson L. 1991. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytic system. J. Immunol. Methods 145: 229-240. https://doi.org/10.1016/0022-1759(91)90331-9
- Thuery P. 2011. L-cysteine as a chiral linker in lanthanide-cucurbit [6] uril one-dimensional assemblies. Inorg. Chem. 50: 10558-10560. https://doi.org/10.1021/ic201965k
Cited by
- Supramolecular complexation of homocysteine and cysteine with cucurbit[7]uril vol.31, pp.6, 2019, https://doi.org/10.1080/10610278.2019.1593414