DOI QR코드

DOI QR Code

The Antimicrobial Peptide CopA3 Inhibits Clostridium difficile Toxin A-Induced Viability Loss and Apoptosis in Neural Cells

  • Yoon, I Na (Divison of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Lee, Joon Ha (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Ho (Divison of Life Science and Chemistry, College of Natural Science, Daejin University)
  • Received : 2018.09.13
  • Accepted : 2018.11.08
  • Published : 2019.01.28

Abstract

Numerous studies have reported that enteric neurons involved in controlling neurotransmitter secretion and motility in the gut critically contribute to the progression of gut inflammation. Clostridium difficile toxins, which cause severe colonic inflammation, are also known to affect enteric neurons. Our previous study showed that C. difficile toxin A directly induces neural cell toxicities, such as viability loss and apoptosis. In the current study, we attempted to identify a potent inhibitor of toxin A-induced neural cell toxicity that may aid in managing toxin A-induced gut inflammation. In our recent study, we found that the Korea dung beetle-derived antimicrobial peptide CopA3 completely blocked neural cell apoptosis caused by okadaic acid or 6-OHDA. Here, we examined whether the antimicrobial peptide CopA3 inhibited toxin A-induced neural cell damage. In neuroblastoma SH-SY5Y cells, CopA3 treatment protected against both apoptosis and viability loss caused by toxin A. CopA3 also completely inhibited activation of the pro-apoptotic factor, caspase-3. Additionally, CopA3 rescued toxin A-induced downregulation of neural cell proliferation. However, CopA3 had no effect on signaling through ROS/p38 $MAPK/p27^{kip1}$, suggesting that CopA3 inhibits toxin A-induced neural cell toxicity independent of this well-characterized toxin A pathway. Our data further suggest that ability of CopA3 to rescue toxin A-induced neural cell damage may also ameliorate the gut inflammation caused by toxin A.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Camilleri M, Nullens S, Nelsen T. 2012. Enteroendocrine and neuronal mechanisms in pathophysiology of acute infectious diarrhea. Dig. Dis. Sci. 57: 19-27. https://doi.org/10.1007/s10620-011-1939-9
  2. Castagliuolo I, LaMont JT, Letourneau R, Kelly C, O'Keane JC, Jaffer A, et al. 1994. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 107: 657-665. https://doi.org/10.1016/0016-5085(94)90112-0
  3. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, et al. 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135: 1984-1992. https://doi.org/10.1053/j.gastro.2008.09.002
  4. Choi H, Hwang JS, Kim H, Lee DG. 2013. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3. Biochem. Biophys. Res. Commun. 440: 94-98. https://doi.org/10.1016/j.bbrc.2013.09.021
  5. Chowanski S, Adamski Z, Lubawy J, Marciniak P, Pacholska-Bogalska J, Slocinska M, et al. 2017. Insect peptides - perspectives in human diseases treatment. Curr. Med. Chem. 24: 3116-3152.
  6. Dillon ST, Rubin EJ, Yakubovich M, Pothoulakis C, LaMont JT, Feig LA, et al. 1995. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Infect. Immun. 63: 1421-1426. https://doi.org/10.1128/IAI.63.4.1421-1426.1995
  7. Goyal RK, Hirano I. 1996. The enteric nervous system. N. Engl. J. Med. Overseas Ed. 334: 1106-1115. https://doi.org/10.1056/NEJM199604253341707
  8. Harwig SS, Swiderek KM, Kokryakov VN, Tan L, Lee TD, Panyutich EA, et al. 1994. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 342: 281-285. https://doi.org/10.1016/0014-5793(94)80517-2
  9. He D, Hagen SJ, Pothoulakis C, Chen M, Medina ND, Warny M, et al. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119: 139-150. https://doi.org/10.1053/gast.2000.8526
  10. Hong J, Zhang P, Yoon IN, Hwang JS, Kang JK, Kim H. 2017. The American cockroach peptide periplanetasin-2 blocks Clostridium Difficile toxin A-induced cell damage and inflammation in the gut. J. Microbiol. Biotechnol. 27: 694-700. https://doi.org/10.4014/jmb.1612.12012
  11. Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, et al. 2009. Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, copris tripartitus. Int. J. Pept. 2009
  12. Just I, Wilm M, Selzer J, Rex G, von Eichel-Streiber C, Mann M, et al. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270: 13932-13936. https://doi.org/10.1074/jbc.270.23.13932
  13. Just I, Selzer J, Hofmann F, Green GA, Aktories K. 1996. Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J. Biol. Chem. 271: 10149-10153. https://doi.org/10.1074/jbc.271.17.10149
  14. Kelly CP, Pothoulakis C, LaMont JT. 1994. Clostridium difficile colitis. N. Engl. J. Med. 330: 257-262. https://doi.org/10.1056/NEJM199401273300406
  15. Kim BY, Lee KS, Choo YM, Kim I, Hwang JS, Sohn HD, Jin BR. 2008. Molecular cloning and characterization of a transferrin cDNA from the white-spotted flower chafer, Protaetia brevitarsis. DNA Seq. 19: 146-150. https://doi.org/10.1080/10425170701461854
  16. Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, et al. 2014. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem. Biophys. Res. Commun. 448: 292-297. https://doi.org/10.1016/j.bbrc.2014.04.105
  17. Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. 2016. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291: 3209-3223. https://doi.org/10.1074/jbc.M115.682856
  18. Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, et al. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  19. Kim H, Rhee SH, Kokkotou E, Na X, Savidge T, Moyer MP, et al. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245. https://doi.org/10.1074/jbc.M413842200
  20. Kim H, Rhee SH, Pothoulakis C, Lamont JT. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  21. Kim IW, Lee JH, Park HY, Kwon YN, Yun EY, Nam SH, et al. 2012. Characterization and cDNA cloning of a defensin-like peptide, harmoniasin, from Harmonia axyridis. J. Microbiol. Biotechnol. 22: 1588-1590. https://doi.org/10.4014/jmb.1206.06064
  22. Leite ML, da Cunha NB, Costa FF. 2018. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol. Ther. 183: 160-176. https://doi.org/10.1016/j.pharmthera.2017.10.010
  23. Na X, Zhao D, Koon HW, Kim H, Husmark J, Moyer MP, et al. 2005. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128: 1002-1011. https://doi.org/10.1053/j.gastro.2005.01.053
  24. Nam HJ, Oh AR, Nam ST, Kang JK, Chang JS, Kim DH, et al. 2012. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation. J. Pept. Sci.18: 650-656. https://doi.org/10.1002/psc.2437
  25. Nam ST, Kim DH, Lee MB, Nam HJ, Kang JK, Park MJ, et al. 2013. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis. Biochem. Biophys. Res. Commun. 437: 35-40. https://doi.org/10.1016/j.bbrc.2013.06.031
  26. Poli E, Lazzaretti M, Grandi D, Pozzoli C, Coruzzi G. 2001. Morphological and functional alterations of the myenteric plexus in rats with TNBS-induced colitis. Neurochem. Res. 26: 1085-1093. https://doi.org/10.1023/A:1012313424144
  27. Pothoulakis C, Lamont JT. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178-183. https://doi.org/10.1152/ajpgi.2001.280.2.G178
  28. Reinshagen M, Rohm H, Steinkamp M, Lieb K, Geerling I, Von Herbay A, et al. 2000. Protective role of neurotrophins in experimental inflammation of the rat gut. Gastroenterology 119: 368-376. https://doi.org/10.1053/gast.2000.9307
  29. Ren X, Kasir J, Rahamimoff H. 2001. The transport activity of the Na+-Ca2+ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulfhydryl reagents. J. Biol. Chem. 276: 9572-9579. https://doi.org/10.1074/jbc.M007823200
  30. Rhee SH, Im E, Riegler M, Kokkotou E, O'Brien M, Pothoulakis C. 2005. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl. Acad. Sci. USA 102: 13610-13615. https://doi.org/10.1073/pnas.0502174102
  31. Roudi R, Syn NL, Roudbary M. 2017. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol. 8: 1320. https://doi.org/10.3389/fimmu.2017.01320
  32. Shin S, Kim JK, Lee JY, Jung KW, Hwang JS, Lee J, et al. 2009. Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. J. Pept. Sci. 15: 559-568. https://doi.org/10.1002/psc.1156
  33. Xia Y, Hu HZ, Liu S, Pothoulakis C, Wood JD. 2000. Clostridium difficile toxin A excites enteric neurones and suppresses sympathetic neurotransmission in the guinea pig. Gut 46: 481-486. https://doi.org/10.1136/gut.46.4.481
  34. Yu SJ, Grider JR, Gulick MA, Xia CM, Shen S, Qiao LY. 2012. Up-regulation of brain-derived neurotrophic factor is regulated by extracellular signal-regulated protein kinase 5 and by nerve growth factor retrograde signaling in colonic afferent neurons in colitis. Exp. Neurol. 238: 209-217. https://doi.org/10.1016/j.expneurol.2012.08.007
  35. Zhang P, Hong J, Yoon IN, Kang JK, Hwang JS, Kim H. 2017. Clostridium difficile toxin A induces reactive oxygen species production and p38 MAPK activation to exert cellular toxicity in neuronal cells. J. Microbiol. Biotechnol. 27: 1163-1170. https://doi.org/10.4014/jmb.1702.02041

Cited by

  1. Clostridium difficile Toxin A Upregulates Bak Expression through PGE2 Pathway in Human Colonocytes vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1906.06040