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SOME INTEGRATIONS ON NULL HYPERSURFACES IN

LORENTZIAN MANIFOLDS

Fortuné Massamba and Samuel Ssekajja

Abstract. We use the so-called pseudoinversion of degenerate metrics

technique on foliated compact null hypersurface, Mn+1, in Lorentzian

manifold M
n+2

, to derive an integral formula involving the r-th order

mean curvatures of its foliations, Fn. We apply our formula to minimal

foliations, showing that, under certain geometric conditions, they are iso-
morphic to n-dimensional spheres. We also use the formula to deduce

expressions for total mean curvatures of such foliations.

1. Introduction

The natural metric induced on a null hypersurface of a semi-Riemannian
manifold is generally degenerate, which renders the known definitions of some
operators, like gradient, divergence, Laplacian, etc., null and void. Moreover,
one cannot define a volume element with such a metric. In [3], the authors
introduced a new non-degenerate metric, with a pseudo inverse, on a null hy-
persurface which has helped in the re-defining of such operators on null hy-
persurfaces. Using such a metric and the concept of Newton transformations
[1, 4, 8] on a compact null hypersurface of a Lorentzian manifold, we derive
a new integral formula for such null hypersurface, admitting a codimension
one foliation (see Theorem 3.5). Consequently, we apply the above theorem
to minimal foliations, showing that at some point they are isomorphic to n-
dimensional spheres (see Theorem 4.3) as well as deducing a formula for the
total mean curvatures of such foliations (see Theorem 4.6). Integral formulae
are fundamentally important as they provide obstructions to the existence of
foliations whose leaves enjoy some special geometric properties-totally geodesic
(or totally umbilic), minimal, constant mean curvature and many more.

The theory of null submanifolds was introduced independently by Duggal
and Bejancu [9] and Kuperli [12] and later studied by many other researchers
[3, 4, 7, 8, 10, 11, 14]. null hypersurfaces are fundamental to general relativity
and electromagnetism. In fact, null hypersurfaces represent different types of
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black hole horizons (see details in [9] and [15]). The first order mean curvature
is useful in describing the behavior of such horizons, for instance see the Ray-
chaudhuris equation and its applications in [10]. Currently, there is little work
on the study of higher order mean curvatures of null hyperfaces and submani-
folds in general. Some of the existing pieces of work are due to [4] and [8]. In [4],
the authors derive some generalized differential equations (involving higher or-
der mean curvatures) of null hypersurfaces in Lorentzian manifolds. They also
present a set of integral formulae, known as Minkowski integral formulae, for
such hypersurfaces, admitting some conformal vector fields. For the case of [8],
some inequalities involving higher order mean curvatures are proved, leading
to some interesting information about totally umbilic null hypersurfaces.

The purpose of this paper is to derive a new integral formulae for compact
null hypersurface in Lorentzian manifolds, admitting a parallel foliation. Some
of its applications are also given in case of minimal foliations by such hyper-
surfaces. The paper is arranged as follows; In Section 2 we quote the basic
notions on null hypersurfaces and Newton transformations necessary for the
rest of the sections. Section 3 presents a new integral formula of foliations by
null hypersurfaces in time-orientable Lorentzian manifolds. Section 4 focuses
on minimal foliations.

2. Preliminaries

Let (M, g) be a (n+ 2)-dimensional semi-Riemannian manifold [15] and M
be a hypersurface of M . Denote by g the induced tensor field on M and suppose
that rank g = n on M . Then we say that M is a null hypersurface of M [9].
Moreover, it is easy to see that M is a null hypersurface of M if and only if
the vector bundle

TM⊥ =
⋃
p∈M

TpM
⊥; TpM

⊥ = {Xp ∈ TpM : gg(Xp, Yp) = 0, ∀Yp ∈ TpM},

becomes a distribution of rank 1 on M . A complementary distribution S(TM)
to TM⊥ in TM is called a screen distribution. Thus, we have the following
decomposition

TM = S(TM)⊕orth TM
⊥,

where ⊕orth denotes the orthogonal direct sum of bundles. From now on, we
denote by Γ(Ξ) the set of smooth sections of a vector bundle Ξ. Let M be a
null hypersurface of (M, g) and S(TM) be a screen distribution on M . Then
there exists a unique vector bundle tr(TM) of rank 1 over M , such that, for
any non-zero section of E of TM⊥ on a coordinate neighborhood U ⊂M , there
exists a unique local section N of tr(TM) satisfying

g(E,N) = 1, g(N,N) = 0, g(X,N) = 0, ∀X ∈ Γ(S(TM)).(2.1)
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Throughout the paper, all manifolds are supposed to be paracompact and
smooth. By (2.1) it follows that tr(TM) is a null vector bundle which en-
ables us to write down the decomposition

TM = S(TM)⊕orth {TM⊥ ⊕ tr(TM)} = TM ⊕ tr(TM),

where ⊕ denotes a non-orthogonal direct sum. We call tr(TM) a null transver-
sal bundle.

Next, let ∇ and ∇∗ denote the induced connections on M and S(TM),
respectively, P be the projection of TM onto S(TM), then the local Gauss-
Weingarten equations of M and S(TM) are the following [9]

∇XY = ∇XY +B(X,Y )N,(2.2)

∇XN = −ANX + τ(X)N,(2.3)

∇XPY = ∇∗XPY + C(X,PY )E,(2.4)

∇XE = −A∗EX − τ(X)E, A∗EE = 0,(2.5)

for all X,Y ∈ Γ(TM), E ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)). In the above
setting, B is the local second fundamental form of M and C is the local second
fundamental form on S(TM). AN and A∗E are the shape operators on TM and
S(TM) respectively, while τ is a 1-form on TM . The above shape operators
are related to their local fundamental forms by

g(A∗EX,Y ) = B(X,Y ), g(ANX,PY ) = C(X,PY ),(2.6)

g(A∗EX,N) = 0, g(ANX,N) = 0, ∀X,Y ∈ Γ(TM).(2.7)

From (2.7) we notice that A∗E and AN are both screen-valued operators. Let

θ = g(N, ·) be a 1-form metrically equivalent to N defined on M . Take

λ = i∗θ(2.8)

to be its restriction on M , where i : M →M is the inclusion map.
In [3], the authors introduced a non-degenerate metric on a null hypersurface

(M, g), in terms of the degenerate metric g and the 1-form λ of (3.4) as follows;
Let X ∈ Γ(TM), then X = PX + λ(X)E and λ(X) = 0 if and only if X ∈
Γ(S(TM)). Define [ by

[ : Γ(TM) −→ Γ(T ∗M)

X 7−→ X[ = g(X, ·) + λ(X)λ(·).(2.9)

Then, [ is an isomorphism of TM onto T ∗M which can be used to generalize
the usual non-degenerate theory. In the latter case, S(TM) coincides with TM .
Consequently, λ vanish identically and the projection morphism P becomes the
identity on TM . Let ] be the inverse of the isomorphism [ in (2.9). For some
X ∈ Γ(TM) (resp. ω ∈ T ∗M), X[ (resp. ω]) is called the dual 1-form of X
(resp. the dual vector field of ω) with respect to the degenerate metric g. If
ω is a 1-form on M , then (2.9) gives ω(X) = g(ω], X) + ω(E)λ(X) for any
X ∈ Γ(TM). Define a (0, 2)-tensor ĝ by ĝ(X,Y ) = X[(Y ). It is obvious that



232 F. MASSAMBA AND S. SSEKAJJA

ĝ is symmetric in X and Y . With respect to a quasi-orthonormal local frame
field {X0 = E,X1, . . . , Xn, N} adapted to TM , we have

ĝ(X,Y ) = g(X,Y ) + λ(X)λ(Y ), ∀X,Y ∈ Γ(TM).(2.10)

The metric ĝ is invertible and its inverse, g[·,·], is called the pseudo-inverse of g
[3]. Also, observe that ĝ coincides with g if the latter is non-degenerate. In the
sequel, we shall make use of the following convention on the range of indices:

0 ≤ a, b, c ≤ n, 1 ≤ i, j, k ≤ n.
The metric ĝ has been used to define the usual divergence operator for a null
hypersurface as follows: Let X be a smooth vector field on M and let divM (X)
be the divergence of X with respect to the non-degenerate metric ĝ, then

divM (X) = −
n∑

a=0

εaĝ(∇Xa
X,Xa), ε0 = 1,(2.11)

where {εa} is the signature of the basis {Xa}. It is well known that the induced
degenerate metric g is not compatible with the induced connection∇ in general,
and this compatibility arises if and only if the null hypersurface M is totally
geodesic in M [9]. Also, ĝ is not compatible with ∇ and, in fact, C. Atindogbé
et al. [3, pp. 3489–3490] showed that

(∇X ĝ)(Y, Z) = λ(Y ){B(X,PZ)− C(X,PZ)}+ λ(Z){B(X,PY ),

− C(X,PY )}+ 2τ(X)λ(Y )λ(Z), X, Y, Z ∈ Γ(TM).(2.12)

Consider an orientable Lorentzian manifold (M, g) and (M, g) be its (n + 1)-
dimensional null hypersurface. Moreover, M is also orientable (cf. [15]) and one
can choose a globally defined unit normal vector field (with respect to the non-
degenerate metric ĝ) E ∈ Γ(TM⊥) on M having the same time-orientation
of M . The ambient manifold being Lorentzian, the induced metric g on M
has signature (0, n). It follows that the hypersurface M equipped with the
associated metric ĝ is a Riemannian manifold and thus, εa = ĝ(Xa, Xa) = 1 for
all a ∈ {0, . . . , n}. Suppose that M admits an integrable screen S(TM) and let
F be a codimension one foliation of M . Then, the leaves of F are n-dimensional
submanifolds, L, of M . Given a point p ∈ M , we may always choose an
orthonormal frame field {e0 = E, e1, . . . , en} defined in a neighborhood of p
such that the vectors e1, . . . , en are tangent to the leaves of F and e0 is normal
to them. Such a frame is called an adapted frame field. Equation (2.6) shows
that A∗E is a self-adjoint operator on S(TM). This is not the case with AN .
However, when S(TM) is integrable [9, Theorem 2.5] showed that AN is self-
adjoint on S(TM). As an example, we have the following.

Example 2.1. Consider a Minkowski spacetime manifold (R4
1, g), where g(x, y)

= −x0y0 + x1y1 + x2y2 + x3y3 for any x, y ∈ R4. Let Ω be an open set of R4

and consider a smooth function G : Ω −→ R4. Then

M = {(x0, . . . , x3) ∈ R4
1 : x0 = G(x1, . . . , x3)}
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is called a Monge hypersurface [9]. Consider a parameterization on M as
x0 = f(v0, . . . , v3); xd+1 = vd, d ∈ {0, . . . , 3}. In this case, a natural frame
field on M is given by ∂vd = G′xd+1∂x0 + ∂xd+1 for all d ∈ {0, . . . , 3}. Then

it follows that TM⊥ is spanned by E = ∂x0 +
∑3

i=1G
′
xi∂xi . It is known [9]

that M is a null hypersurface if TM⊥ = RadTM (the radical distribution),
which means that E must be a null vector field with respect to g. Hence, M
is null Monge hypersurface if G satisfy the differential equation

∑3
i=1G

′2
xi =

1. The corresponding null transversal vector N is given by N = 1
2{−∂x0 +∑3

i=1G
′
xi∂xi}. Then, S(TM) = span{X,Y } where X = G′x3∂x1 −G′x1∂x3 and

Y = G′x3∂x2 − G′x2∂x3 , in which we have considered G′x3 6= 0 locally on M .
By simple calculations we have g([X,Y ], N) = 0. Hence, S(TM) is integrable.
Now, using the fact that g([X,Y ], N) = 0, we have g(Y,∇XN)−g(X,∇YN) =
0. Hence, from this last equation we have g(ANX,Y ) = g(X,ANY ), which
shows that AN is self-adjoint on S(TM).

We will consider codimension one foliations Fn ofM furnished with the oper-
ator A∗E . The operator A∗E , restricted to S(TM), is diagonalizable with n real-
valued eigenvalues κ∗1, . . . , κ

∗
n with respect to the eigenvector fields e1, . . . , en

tangent to the leaves of F . For 1 ≤ k ≤ n, let S∗r denote the r-th elementary
symmetric function on the eigenvalues κ∗1, . . . , κ

∗
n; this way, one gets n smooth

functions S∗r : Fn −→ R, such that det(tI − A∗E) =
∑n

k=0(−1)kS∗k tn−k, where
S∗0 = 1 by definition and I is the identity on F . One immediately sees that
S∗r = σr(κ∗1, . . . , κ

∗
n), where σr = R[κ∗1, . . . , κ

∗
n], is the r-th elementary symmet-

ric polynomial on the indeterminates κ∗1, . . . , κ
∗
n. For 1 ≤ k ≤ n, one defines

the r-th mean curvature H∗ of F by
(
n
r

)
H∗r = S∗r = σr(κ∗1, . . . , κ

∗
n). Sometimes,

S∗r instead of H∗ is referred to as the r-th mean curvature. In that regard,
we will adopt the latter for mean curvature in this paper. The r-th Newton
transformation T ∗r , for 0 ≤ r ≤ n, on F is defined by setting T ∗0 = I and, for
1 ≤ r ≤ n, by the recurrence relation

T ∗r = S∗r I−A∗E ◦ T ∗r−1.(2.13)

By Caylay-Hamiliton theorem T ∗n = 0. Since T ∗r is a polynomial in A∗E for
every r, it is also self-adjoint and commutes with A∗E . Therefore, the basis
{e1, . . . , en} diagonalizes T ∗r . Let trs(·) denote the trace with respect to TF
and tr(·), the trace with respect to TM . Then, the Newton transformation T ∗r
satisfy the following relations, for any X ∈ Γ(M), (see [1, 4] for details)

trs(T ∗r ) = (n− r)S∗r , trs(A∗E ◦ T ∗r ) = (r + 1)S∗r+1,(2.14)

trs(A∗
2

E ◦ T ∗r ) = S∗1S∗r+1 − (r + 2)S∗r+2, trs(T ∗r ◦ ∇∗XA∗E) = X(Sr+1).(2.15)

The results of the present paper are based on the computation of the divergence
of some smooth vector fields globally defined on M . In order to do this, we
will need to extent the definition of T ∗r to TM . If we denote by Tr this new
Newton transformation on M , then Tr = diag(T ∗r ,

(
n
r

)
H∗r).
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The divergence of the operator Tr : Γ(TM) −→ Γ(TM) is defined as the
trace of the End(TM)-valued operator ∇Tr and given by

divM (Tr) = tr(∇Tr) =

n∑
a,b=0

g[ab](∇Tr)(ea, eb) =

n∑
a=0

(∇eaTr)ea.(2.16)

Denote by R∗, R and R, the curvature tensors of S(TM), M and M respec-
tively. Then, by (cf. [9, p. 94]), we have

g(R(X,Y )Z,N) = g(R(X,Y )Z,N), ∀X,Y, Z ∈ Γ(TM),(2.17)

where N ∈ Γ(tr(TM)) and by [10, p. 66] we have

g(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW ) + C(X,PZ)B(Y, PW )

− C(Y, PZ)B(X,PW ), ∀X,Y, Z,W ∈ Γ(TM).(2.18)

3. An integral formula

In this section, we present a special integral formula for a foliation, Fn, of

a compact null hypersurface (Mn+1, ĝ) in a Lorentzian manifold (M
n+2

, g).
Integral formulae are important in differential geometry since they provide ob-
structions to the existence of foliations whose leaves enjoy some special geomet-
ric properties, as being totally geodesic (or totally umbilic), minimal, constant
mean curvature and many more. Most of the interesting and useful integral
formulae in both Riemannian and semi-Riemannian geometry are obtained by
computing the divergence of certain vector fields and applying Stoke’s theorem
(see some examples in [1]).

Observe that the normal null vector field E, with respect to g, is unitary
with respect to the nondegenerate metric ĝ. That is ĝ(E,E) = 1, and hence E
becomes a unit normal vector field on M with respect to the associated metric
ĝ. In that line, we can apply the method used in [1] to compute the divergence
of the vector fields Tr∇EE (= Tr∇EE as B(E, ·) = 0) and rSr+1E and then
apply Stoke’s theorem to obtain analogous integration formulae for foliations
by null hypersurfaces in Lorentzian manifolds.

Definition 3.1. Let (M, g) be a screen integrable null hypersurface of (M, g).
A foliation F on M is said to be parallel if ∇∗XY = 0 for all X ∈ Γ(TM) and
Y ∈ Γ(TF).

Furthermore, we will suppose that C(E, Y ) = 0 for any Y ∈ Γ(TF). With
the above definition, we state the following.

Proposition 3.2. Let (M, g) be a screen integrable null hypersurface of a
Lorentzian manifold (M, g) such that C(E, ·) = 0. Let F be a parallel foli-
ation of M and let {ei}, for i ∈ {1, . . . , n}, be a local field tangent to F . Then

ĝ(∇ei∇EE, ej) = ĝ(A∗Eei, ANej)− ĝ((∇∗EA∗E)ei, ej)− g(R(ei, E)ej , N)

+ τ(E){B(ei, ej) + C(ei, ej)}+ E ·B(ei, ej)− E · C(ei, ej),
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where R is the curvature tensor of M .

Proof. Considering Definition 3.1, we see that ∇∗Xei = 0 for any X ∈ Γ(TM),
and C(E, ei) = 0. From these conditions we deduce that ∇Eei = 0. In fact,
from (2.4), we have ∇Eei = ∇∗Eei + C(E, ei)E = 0. Thus, using (2.12) and
Definition 3.1, we derive

∇ei ĝ(∇EE, ej) = − τ(E){B(ei, ej)− C(ei, ej)}
+ ĝ(∇ei∇EE, ej) + ĝ(∇EE,∇eiej).(3.1)

By (2.5) we have ĝ(∇EE, ej) = −g(A∗EE, ej) + τ(E)g(E, ej) = 0, and hence
equation (3.1) gives

−ĝ(∇EE,∇eiej) = ĝ(∇ei∇EE, ej)− τ(E){B(ei, ej)− C(ei, ej)}.(3.2)

Also, from (2.5), (2.12) and Definition 3.1, we derive

ĝ((∇∗EA∗E)ei, ej) = ĝ(∇EE,∇eiej) + ĝ(E,∇E∇eiej)

+ E ·B(ei, ej)− E · C(ei, ej) + 2τ(E)C(ei, ej).(3.3)

Now, using (3.3), we derive

ĝ(A∗Eei, ANej)− ĝ(R(ei, E)ej , E)− ĝ((∇∗EA∗E)ei, ej)

= ĝ(A∗Eei, ANej)− ĝ(∇EE,∇eiej) + ĝ(∇[ei,E]ej , E)

− E ·B(ei, ej) + E · C(ei, ej)− 2τ(E)C(ei, ej).(3.4)

Decomposing the screen component of∇eiE in the basis {ek} for k ∈ {1, . . . , n},
we have P (∇eiE) =

∑n
k=1 ĝ(∇eiE, ek)ek. Since ∇Eej = 0 (see Definition 3.1),

we have

ĝ(∇[ei,E]ej , E) = ĝ(∇∇ei
Eej , E) =

n∑
k=1

ĝ(∇eiE, ek)ĝ(E,∇ekej),

which on using the compatibility relation (2.12) and the fact that ĝ(X,Y ) =∑n
a=0 ĝ(X, ea)ĝ(ea, Y ), we deduce that

ĝ(∇[ei,E]ej , E) = −
n∑

k=1

B(ei, ek)C(ek, ej) = −ĝ(A∗Eei, ANej).(3.5)

Then replacing (3.5) in (3.4), we have

ĝ(A∗Eei, ANej)− ĝ(R(ei, E)ej , E)− ĝ((∇∗EA∗E)ei, ej)

= − ĝ(∇EE,∇eiej)− ĝ(E,∇ei∇Eej)− E ·B(ei, ej)

+ E · C(ei, ej)− 2τ(E)C(ei, ej).(3.6)

Putting (3.2) in (3.6), we have

ĝ(A∗Eei, ANej)− ĝ(R(ei, E)ej , E)− ĝ((∇∗EA∗E)ei, ej)

= ĝ(∇ei∇EE, ej)− E ·B(ei, ej) + E · C(ei, ej)

− τ(E){B(ei, ej) + C(ei, ej)},(3.7)
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from which the result follows by considering the fact that ĝ(R(ei, E)ej , E) =
g(R(ei, E)ej , N), which ends the proof. �

Proposition 3.3. Under the assumptions of Proposition 3.2, we have

divM (Tr∇EE) = − ĝ(divM (Tr),∇EE)− trs(A∗E ◦AN ◦ Tr)

+ trs(Tr ◦ (∇∗EA∗E))− E · trs(A∗E ◦ Tr) + E · trs(AN ◦ Tr)

− 2τ(E)trs(AN ◦ Tr)− τ(E){S∗1 − trs(AN )}S∗r

− ĝ(∇E∇EE, TrE)− trs(R(E)Tr)−
n∑

i=1

g(R(Trei, N)E, ei)

for all r ∈ {0, . . . , n− 1}.

Proof. Using (2.12) and the symmetry of Tr, we get

ĝ((∇eiTr)ei,∇EE) = ĝ(ei, (∇eiTr)∇EE)− τ(E)λ(TrE){B(ei, ei)

− C(ei, ei)}+ τ(E){B(ei, Trei)− C(ei, Trei)}.(3.8)

Now, by (2.16) and (3.8) we have

ĝ(divM (Tr),∇EE) =

n∑
a=0

ĝ(∇eaTr∇EE, ea)−
n∑

a=0

ĝ(∇ea∇EE, Trea)

− τ(E){S∗1 − trs(AN )}S∗r(3.9)

+ τ(E){trs(A∗E ◦ Tr)− trs(AN ◦ Tr)}.

Finally, letting ej = Trei in Proposition 3.2 and then substituting the resulting
equation in (3.9), while considering (2.11) and (2.17), we get the desired result.

�

Proposition 3.4. Let (M, g) be a screen integrable null hypersurface of a
Lorentzian manifold (M, g) and F be a parallel foliation on M . Then

divM (Tr∇EE + rS∗r+1E) = − ĝ(divM (Tr),∇EE)− trs(A∗E ◦AN ◦ Tr)

− τ(E){S∗1 − trs(AN )}S∗r − r[S∗1 + τ(E)]S∗r+1

+ E · trs(AN ◦ Tr)− 2τ(E)trs(AN ◦ Tr)

− ĝ(∇E∇EE, TrE)−
n∑

i=1

g(R(Trei, N)E, ei)

for all r ∈ {0, . . . , n− 1}.

Proof. A proof follows immediately from Proposition 3.3, (2.14), (2.15) and

the fact that divM (S∗r+1E) = S∗r+1divM (E) + E(S∗r+1) = −[S∗1 + τ(E)]S∗r+1 +
E(S∗r+1). �

Let (M, g) be (n + 2)-dimensional orientable Lorentzian manifold and (M, ĝ)
be its (n + 1)-dimensional null hypersurface. Moreover, M is also orientable
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(cf. [15]). Therefore, by Lemma 20 of [15, p. 195], M admits a (global) (n+1)-
dimensional volume element, which we will denote by dvolĝ(M). In terms
of the metric ĝ and differential forms dxa for a ∈ {0, . . . , n} on M , we have

dvolĝ(M) = |det(ĝab)|
1
2 dx0 ∧ · · · ∧dxn. Now, from Proposition 3.4 we state the

following.

Theorem 3.5. Let (M, g) be a compact orientable screen integrable null hy-
persurface of a Lorentzian manifold (M, g) and F be a parallel foliation on M
such that C(E, ·) = 0. Then∫

M

{ĝ(divM (Tr),∇EE) + trs(A∗E ◦AN ◦ Tr)− E · trs(AN ◦ Tr)

+ 2τ(E)trs(AN ◦ Tr) + τ(E){S∗1 − trs(AN )}S∗r + r[S∗1 + τ(E)]S∗r+1

+ ĝ(∇E∇EE, TrE) +

n∑
i=1

g(R(Trei, N)E, ei)}dvolĝ(M) = 0

for all r ∈ {0, . . . , n− 1}.

Proof. Integrating the equation of Proposition 3.4 over M and using Stoke’s
theorem, we have

∫
M

divM (Tr∇EE + rS∗r+1E)dvolĝ(M) = 0 and the result
follows immediately, which ends the proof. �

Remark 3.6. Notice that Theorem 3.5 is the null version of Corollary 3.6 of
[1]. The two results shows remarkable differences by the terms involved and
the mixture of shape operators A∗E and AN . However, under conformality of
shape operators (this is covered in the next section), our formula gives, among
other new results, analogous results as those seen in [1].

4. Application of Theorem 3.5 to minimal foliations

In this section, we apply Theorem 3.5 to minimal codimension one foliation
F of M . A foliation F on M is said to be minimal if its first order mean
curvature S∗1 vanishes, i.e., S∗1 = 0. It is important to stress that the 1-form
τ defined in (2.3) and (2.5) depends on the section E of TM⊥. It has been
proved in [9, p. 99] that there exists a pair (E,N) on an open neighborhood
U ⊂ M such that the corresponding 1-form τ vanishes identically. We will
consider such a section in this section.

Example 4.1. The following example appeared in [4]. Consider the 6-dimen-
sional space M = R6 endowed with a Lorentzian metric g = −(dx0)2+(dx1)2+

e2x
0{(dx2)2 +(dx3)2}+e2x

1{(dx4)2 +(dx5)2}, where (x0, . . . , x5) are the usual
rectangular coordinates on M . The non-zero Christoffel coefficients of the
Levi-Civita connection of g are Γ2

02 = Γ3
03 = Γ4

14 = Γ5
15 = 1, Γ0

22 = Γ0
33 =

−e2x0

and Γ1
44 = Γ1

55 = e2x
1

. Consider a hypersurface M of M given by
M = {(x0, . . . , x5) ∈ R6 : x0 + x1 = 0}. Then, M is a null hypersurface with
N = − 1

2 (∂x0 + ∂x1) and E = ∂x0 − ∂x1. Also, S(TM) = span{e1, e2, e3, e4},
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where e1 = e−2x
0

∂x2, e2 = e−2x
0

∂x3, e3 = e−2x
1

∂x4 and e1 = e−2x
1

∂x5.
Notice that [ei, ej ] = 0 for all i, j ∈ {1, 2, 3, 4}. Hence, S(TM) is integrable.
By a straightforward calculation, we have ∇e1E = e1, ∇e2E = e2, ∇e3E = −e3
and ∇e4E = −e4. Thus, κ∗1 = κ∗2 = −1 and κ∗3 = κ∗4 = 1, from which
S∗1 = κ∗1 + κ∗2 + κ∗3 + κ∗4 = 0. Hence, any codimension one foliation F of M in
this example is minimal.

A semi-Riemannian manifold (M, g) of constant sectional curvature c is
called a semi-Riemannian space form and denoted by M(c). By the same
convention of the curvature we have used in Proposition 3.2, the curvature
tensor field R of M(c) is given by (cf. O’Neill [15, p. 80, p. 89])

(4.1) R(X,Y )Z = c{g(Y ,Z)X − g(X,Z)Y }, ∀X,Y , Z ∈ Γ(TM).

The scalar curvature R is one of the most important concepts in (semi-)Rie-
mannian geometry (and particularly in General Relativity). It is the weakest
curvature invariant one can attach (point-wise) to a semi-Riemannian mani-
fold. Its value at any point can be described as the trace of the Ricci tensor,
evaluated at that point. On a null hypersurface (M, g), (a) the induced con-
nection is not a Levi-Civita connection (unless M is totally geodesic), (b) the
induced Ricci tensor is not symmetric in general and (c) the induced metric g
is degenerate. which means g has no inverse. Hence, one cannot contract the
Ricci tensor of such a hypersurface to obtain a scalar curvature. To overcome
theses difficulties, Duggal-Sahin considered, in [10], a class of null hypersur-
faces in ambient Lorentzian signature, called null hypersurfaces of genus zero.
Elements of such class are subject to the following constraints: admission of
canonical screen distribution that induces a canonical transversal vector bun-
dle and induced symmetric Ricci tensor. Such restrictions were overcame by
a pseudo inversion technique of g by C. Atindogbe et al. [3]. He proved the
following result about the extrinsic scalar curvature R of M , which we quote
for further use.

Theorem 4.2 ([2]). Let (M, g) be a null hypersurface of a (n+2)-dimensional
space form M(c). Then

R = cn2 + trs(A∗E)trs(AN )− trs(A∗E ◦AN ),

where R is the extrinsic scalar curvature of M .

From the above result and Theorem 3.5, we state the following.

Theorem 4.3. Let Fn, n ≥ 2, be a minimal parallel foliation of a compact
null hypersurface (M, g) satisfying τ = 0 in a Lorentzian space form M(c ≥ 0).
Then the extrinsic scalar curvature, R, of M satisfy the following inequality∫

M

Rdvolĝ(M) ≥ 0,

with equality if M is flat, that is, c = 0. Moreover, if c > 0, then M is
isomorphic to n-dimensional spheres.
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Proof. Setting r = 0 in Theorem 3.5 and the fact τ = 0, we have∫
M

{trs(A∗E ◦AN )− E · trs(AN )

+

n∑
i=1

g(R(Trei, N)E, ei)}dvolĝ(M) = 0.(4.2)

Thus, applying (2.10) and the fact M is a space of constant sectional curvature
c, we have

∑n
i=1 g(R(ei, N)E, ei) = cn. Then, (4.2) leads to∫
M

{trs(A∗E ◦AN )− E · trs(AN ) + cn}dvolĝ(M) = 0.(4.3)

As F is minimal, then trs(A∗E) = S∗1 = 0 and E · trs(AN ) = divM (trs(AN )E).
Hence, (4.3), Theorem 4.2 and the compactness of M leads to∫

M

{R − c(n2 + n)}dvolĝ(M) = 0,

from which the inequality of our theorem follows by observing that c(n2 +n) ≥
0. The last assertion follows immediately by the well known Gauss-Bonnet
Theorem [13], and the proof is complete. �

Let RicL denote the Ricci tensor of a leaf L of F . Then putting X = PW =
ei, where i ∈ {1, . . . , n}, in (2.18) we derive

RicL(Y, PZ) =

n∑
i=1

g(R(ei, Y )PZ, ei) +

n∑
i=1

C(Y, PZ)B(ei, ei)

−
n∑

i=1

C(ei, PZ)B(Y, ei)

=

n∑
i=1

g(R(ei, Y )PZ, ei)− g(ANPZ,A
∗
EY ) + C(Y, PZ)trs(A∗E).(4.4)

By [10, p. 138], we have

n∑
i=1

g(R(ei, Y )PZ, ei) = RicM (Y, PZ)− g(R(E, Y )PZ,N),(4.5)

where RicM is the Ricci tensor of M . Putting (4.5) in (4.4) we get

RicL(Y, PZ) = RicM (Y, PZ)− g(ANPZ,A
∗
EY )

+ C(Y, PZ)trs(A∗E)− g(R(E, Y )PZ,N).(4.6)

From [10, p. 138] we have

RicM (Y, PZ) = Ric(Y, PZ) +B(Y, PZ)(AN )

− g(ANY,A
∗
EPZ)− g(R(E,PZ)Y,N),(4.7)
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where Ric is the Ricci tensor of M . Then using (4.7), (2.17) and (4.6) we
deduce

RicL(Y, PZ) = Ric(Y, PZ) +B(Y, PZ)trs(AN ) + C(Y, PZ)trs(A∗E)

− g(ANY,A
∗
EPZ)− g(ANPZ,A

∗
EY )

− g(R(E,PZ)Y,N)− g(R(E, Y )PZ,N).(4.8)

Relation (4.8) gives the Ricci tensor of a leaf L of F . Denote by RL and R the
intrinsic scalar curvatures of L and M respectively. Then (4.8) gives

RL = R−Ric(E,E)−Ric(N,N) + 2trs(A∗E)trs(AN )

− 2trs(A∗E ◦AN )− 2

n∑
i=1

g(R(E, ei)ei, N).(4.9)

Now by (3.5.26) of [10] and (4.9), we deduce that

RL = R−Ric(E,E) + trs(A∗E)trs(AN )

− trs(A∗E ◦AN )−
n∑

i=1

g(R(E, ei)ei, N).

When M is a space of constant sectional curvature c, the above relation reduces
to

RL = R+ trs(A∗E)trs(AN )− trs(A∗E ◦AN )− cn.(4.10)

Using (4.10) and Theorem 4.3 we state the following.

Corollary 4.4. Under the hypothesis of Theorem 4.3, the leaves of F are
isomorphic to n-dimensional spheres if

∫
M

(trs(A∗E)trs(AN )− trs(A∗E ◦ AN )−
cn)dvolĝ(M) ≥ 0.

The integral in Theorem 3.5 depends on both shape operators A∗E and AN .
As the shape operator is an information tool in studying geometry of subman-
ifolds, we can consider a foliation F whose shape operator A∗E is conformal to
that of M (i.e., AN ).

A null hypersurface (M, g) of a semi-Riemannian manifold is called screen
locally conformal [9] if the shape operators AN and A∗E of M and S(TM),
respectively, are related by

AN = ϕA∗E ,(4.11)

where ϕ is a non-vanishing smooth function on a neighborhood U ⊂ M . In
particular, M is screen homothetic if ϕ is non-zero constant.

As an example of a minimal screen conformal null hypersurface, we have the
following.

Example 4.5 (Null Monge hypersurface). Let M be the null Monge hy-
perface of Example 2.1 such that the function G satisfies G(x1, . . . , x3) =
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α0 +
∑3

k=1 αkxk, where
∑3

k=1 α
2
k = 1. By virtue of Theorem 2 (or Theo-

rem 3) of [6, p. 102], M is minimal. Consider along M the time-like sec-
tion V = ∂x0 ∈ Γ(TR4

1). Then g(V ,E) = −1 which implies that V is
not tangent to M . Therefore, the vector bundle H = span{V ,E} is non-
degenerate on M . The complementary orthogonal vector bundle S(TM) to
H in TR4

1 is a non-degenerate distribution on M and is complementary to
TM⊥. Hence, S(TM) is a screen distribution on M . The corresponding null
transversal bundle tr(TM) is spanned by N = V + 1

2E and τ = 0. Indeed,

τ(X) = g(∇XN,E) = 1
2g(∇XE,E) = 0 for any X ∈ Γ(TM). The Gauss-

Weingarten equations simplifies to ∇XN = −ANX and ∇XE = −A∗EX. On

the other hand, following simple calculations we get ∇XE = 0 and ∇XN = 0.
Thus M is screen globally conformal with a conformal factor ϕ = 1/2 [9].

Theorem 4.6. Let (M(c), g) be a compact screen conformal null hypersurface
in a Lorentzian space form (M(c), g). Let F be a minimal parallel foliation of
M . If τ = 0 then, for all r ∈ {0, . . . , n− 1},∫

M

{
ϕS∗r+2 −

c(n− r)
r + 2

S∗r
}
dvolĝ(M) = 0.(4.12)

Proof. Since F is minimal and M is of constant sectional curvature, we respec-
tively have S∗1 = 0 and, by (4.1),

∑n
i=1 g(R(Trei, N)E, ei) = c(n−r)S∗r . Hence

by Theorem 3.5, we have∫
M

{trs(A∗E ◦AN ◦ Tr)− E · trs(AN ◦ Tr)

+ c(n− r)S∗r }dvolĝ(M) = 0.(4.13)

Since S∗1 = 0, we have

divM (trs(AN ◦ Tr)E) = E · trs(AN ◦ Tr).(4.14)

Putting (4.14) in (4.13) and considering AN = ϕA∗E and that M is compact,
we have ∫

M

{ϕtrs(A∗
2

E ◦ Tr) + c(n− r)S∗r }dvolĝ(M) = 0,(4.15)

from which (4.12) follows by applying (2.15). �

In the event that M is screen homothetic, we get the following result which
is similar to that in [1, p. 109].

Corollary 4.7. Under the assumptions of Theorem 4.6, if M is screen homo-
thetic, then ∫

M

S∗r dvolĝ(M) =


(
c

ϕ

) r
2
(n

2
r
2

)
volĝ(M), n, r even,

0, n or r odd.

(4.16)

Next, we consider the case S∗1 = 0 and S∗2 constant.
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Theorem 4.8. Let (M, g) be a compact screen homothetic null hypersurface
with ϕ > 0 in a Lorentzian space form (M(c), g) and F , a codimension one
parallel foliation of M whose leaves are minimal and with constant S∗2 . Then
S∗2 must be constant on M . Furthermore, M is locally a product space of a null
curve C and a leaf L of F .

Proof. By Proposition 2.31 of [5, p. 101], either S∗2 is constant on M , and the
assertions of the theorem are satisfied, or there exists a closed leaf L of F with
the property that S∗2 |L = maxM S∗2 (p). Suppose that S∗2 is non-constant on M .
SinceM has non-negative sectional curvature, we have

∑n
i=1 g(R(ei, N)E, ei) =

nc. Thus, by Theorem 3.5, we have ϕ
∫
M
S∗2dvolĝ(M) > 0. Consequently,∫

M
S∗2dvolĝ(M) > 0. As S∗2 is non-constant on M , then S∗2 |L > 0 and S∗2 is

positive on L. But S∗21 ≥ S∗2 > 0. As S∗1 = 0, we get 0 ≥ S∗2 > 0, which is a
contradiction. Hence, S∗2 is a constant on M and the proof is complete. �

It is important to note that the operators T ∗r given by recurrence (2.13)
are not unique, mainly due to the fact that A∗E changes with a change in the
screen distribution S(TM). More precisely, let S(TM) and S(TM)′ be two
screen distributions of M , with respect to the bases {ei} and {e′i} respectively.
Denote by N ′ the section of tr(TM)′ for the same E ∈ Γ(RadTM). Then, by
[9, page 87] we have, for any X ∈ Γ(TM),

A∗
′

EX = A∗EX +B(X,N −N ′)E, τ(X)′ = τ(X) +B(X,N ′ −N)E.(4.17)

Notice that the eigenvalues of T ∗r are of the form

µi,r =
∑

i1<···<ir,ij 6=i

κ∗i1 · · ·κ
∗
ir .(4.18)

Let T ∗
′

r be the new Newton transformation with respect to A∗
′

E , for a given
eigenspace span{ek}. Using the first relation of (4.17), (2.13) and (4.18), we
derive

T ∗
′

r = T ∗r + (S∗
′

r − S∗r )I + (µi,r−1 − µ′i,r−1)A∗E −B(T ∗r−1, N −N ′).(4.19)

Hence, from (4.19) and Tr = diag(T ∗r ,
(
n
r

)
H∗r) we conclude that Tr also depend

on S(TM). From the above discussions we can see that Theorem 3.5 depends
on the choice of S(TM).
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