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TRUNCATED HANKEL OPERATORS

AND THEIR MATRICES

Bartosz  Lanucha and Ma lgorzata Michalska

Abstract. Truncated Hankel operators are compressions of classical

Hankel operators to model spaces. In this paper we describe matrix rep-
resentations of truncated Hankel operators on finite-dimensional model

spaces. We then show that the obtained descriptions hold also for some
infinite-dimensional cases.

1. Introduction

Let H2 denote the Hardy space in the unit disk D = {z : |z| < 1}. The
space H2 consists of functions analytic in D with square summable Maclaurin
coefficients. It can also be identified with a closed subspace of L2 := L2(∂D),
namely, the closed linear span of analytic polynomials. Denote by P the or-
thogonal projection from L2 onto H2.

The Toeplitz operator Tϕ with symbol ϕ ∈ L∞(∂D) is defined on H2 by

Tϕf = P (ϕf), f ∈ H2.

The Hankel operator Hϕ with symbol ϕ ∈ L∞(∂D) can be defined on H2 by

Hϕf = J(I − P )(ϕf), f ∈ H2,

where J : L2 → L2 is the “flip” operator given by

Jf(z) = zf(z), |z| = 1.(1.1)

Note that if ϕ ∈ L2, then both Tϕ and Hϕ are densely defined on H∞ ⊂ H2,
the algebra of bounded analytic functions in D.

Toeplitz and Hankel operators have been long and intensely studied (see, e.g.
[2, 15, 17]). Recently, research into properties of the compressions of Toeplitz
and Hankel operators to model spaces has gained more and more interest and
has resulted in deep and relevant discoveries [1, 3, 4, 7, 9–11,14,18].
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Let α ∈ H∞ be such that |α| = 1 a.e. on ∂D. Then α is called an inner
function. The corresponding model space Kα is the orthogonal complement of
αH2 in H2,

Kα = H2 	 αH2.

The model space Kα is invariant under the backward shift S∗ = Tz. It is a
reproducing kernel Hilbert space with the kernel function

kαw(z) =
1− α(w)α(z)

1− wz
, w, z ∈ D.

Note that since kαw is bounded, the set K∞α = Kα ∩H∞ is dense in Kα.
The truncated Toeplitz operator (TTO) Aϕ, ϕ ∈ L2, is densely defined on

Kα by

Aϕf = Pα(ϕf),

where Pα is the orthogonal projection from L2 onto Kα. The operator Aϕ can
be seen as the compression of Tϕ to the model spaceKα, that is, Aϕ = PαTϕ|Kα .

The study of these operators began with D. Sarason’s paper [18].
Truncated Hankel operators where introduced by C. Gu in [12]. The trun-

cated Hankel operator (THO) Bϕ, ϕ ∈ L2, is the compression of Hϕ to Kα,
Bϕ = PαHϕ|Kα . More precisely, Bϕ is defined on Kα by

Bϕ = PαJ(I − P )(ϕf),

where J is given by (1.1).
For an inner function α let

T (α) = {Aϕ : ϕ ∈ L2 and Aϕ is bounded}
and

H (α) = {Bϕ : ϕ ∈ L2 and Bϕ is bounded}.
The purpose of this paper is to investigate matrix representations of opera-

tors from H (α).
Recall that classical Toeplitz and Hankel operators can be characterized

in terms of their matrix representations with respect to the monomial basis
{zk : k ≥ 0} of H2. A bounded linear operator T : H2 → H2 is a Toeplitz
operator if and only if its matrix is a Toeplitz matrix, that is, it has constant
diagonals. Similarly, T : H2 → H2 is a Hankel operator if and only if its matrix
is a Hankel matrix, that is, its entries are constant along each skew-diagonal.

Since for α(z) = zn, n positive integer, the model space Kα is the set of all
polynomials of degree less than n, the above gives a matrix characterization of
operators from T (zn) and H (zn).

Matrix representations of TTO’s on finite-dimensional model spaces were
considered in [4]. Some infinite-dimensional cases were considered in [14]. Au-
thors in [4] and [14] provided characterizations of operators from T (α) in terms
of matrix representations with respect to some natural bases of Kα, namely,
kernel bases, conjugate kernel bases, Clark bases (see Section 3 for definitions).
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Here we give similar characterizations for operators from H (α). In Section
2 we present some basic properties of operators from H (α). In Section 3 we
consider the finite-dimensional cases. We show for example that if α is a finite
Blaschke product with distinct zeros a1, . . . , an, then the matrix of a THO
with respect to the kernel basis {kαa1 , . . . , k

α
an} is determined by its entries from

the first row and the first column. In Section 4 we investigate some infinite-
dimensional cases.

2. Basic properties of THO’s

We begin with some basic properties of truncated Hankel operators (see
[12,13]).

Let α be an inner function. Then α#(z) = α(z) is also an inner function. It
is easy to verify that the map J# : L2 → L2 defined by

J#f(z) = f#(z) = f(z), |z| = 1,

is an anti-linear, isometric involution on L2 (such a map is called a conjugation).
The authors of [3] proved that f ∈ Kα if and only if f# ∈ Kα# , that is, the
conjugation J# transforms Kα onto Kα# .

Another conjugation on L2, this one associated with the inner function α,
is the operator Cα defined on L2 by

Cαf(z) = f̃(z) = α(z)zf(z), |z| = 1.(2.1)

The conjugation Cα transforms Kα onto Kα.

By the conjugate kernel function we mean the function k̃αw = Cαk
α
w, w ∈ D.

A simple computation gives

k̃αw(z) =
α(z)− α(w)

z − w
, w, z ∈ D.

Clearly, Bϕ = 0 whenever ϕ ∈ H2. Moreover, if ϕ ∈ αα#H2, then Bϕ = 0.

Indeed, let ϕ = αα#ψ, ψ ∈ H2. Then, for f, g ∈ K∞α ,

〈Bϕf, g〉 =
〈
B
αα#ψ

f, g
〉

=
〈
αα#ψf, Jg

〉
=
〈
J
(
αα#ψf

)
, g
〉

=
〈
zα#αψ#f#, g

〉
=
〈
αzg · α#ψ#, f#

〉
=
〈
α#ψ# · Cαg, f#

〉
= 0,

since f# ∈ Kα# . Hence, Bϕ = 0 for ϕ ∈ H2 + αα#H2. More can be proved.

Proposition 2.1 ([12], Rem. 4.3). Let ϕ ∈ L2(∂D). Then Bϕ = 0 if and only

if ϕ ∈ H2 + αα#H2.

Corollary 2.2. For each B ∈H (α) there exists ψ ∈ Kαα# such that B = Bψ.

In [18] D. Sarason characterized the operators from T (α) using the com-
pressed shift Sα = Az. A similar characterization was given by C. Gu in [12]
(see also [13]).
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Theorem 2.3 ([12], Thm. 3.1). A bounded linear operator B on Kα is a
truncated Hankel operator if and only if there exist functions ψ, χ ∈ Kα such
that

B − S∗αBS∗α = ψ ⊗ kα0 + k̃α0 ⊗ χ.

In what follows we will need some examples of rank-one truncated Hankel
operators. These are described in Proposition 2.4 (see [12] for proofs). We first
recall the notion of the angular derivative in the sense of Carathéodory (ADC).
We say that α has an ADC at λ ∈ ∂D if there exist finite nontangential limits
α(λ) and α′(λ), that is, α(z) tends to α(λ) and α′(z) tends to α′(λ) whenever

z ∈ D tends to λ nontangentially (with |z−λ|1−|z| bounded) and |α(λ)| = 1.

It is known that if α has an ADC at λ ∈ ∂D, then kαλ = 1−α(λ)α(z)

1−λz belongs

to Kα and kαz → kαλ in norm whenever z → λ nontangentially.

Proposition 2.4 ([12], Thm. 7.4).

(a) For every w in D the operator kαw ⊗ kαw belongs to H (α) and

kαw ⊗ kαw = Bzkw = B
zkαα

#
w

.

(b) For every w in D the operator k̃αw ⊗ k̃αw belongs to H (α) and

k̃αw ⊗ k̃αw = B
αα#

z−w
= B

k̃αα
#

w

.

(c) If α has an ADC at both λ, λ ∈ ∂D, then the operators kα
λ
⊗ kαλ and

k̃α
λ
⊗ k̃αλ belong to H (α).

Actually, C. Gu [12] proved that nonzero scalar multiples of the operators
from Proposition 2.4 are the only rank-one THO’s.

It is known that the model space Kα is finite-dimensional if and only if α
is a finite Blaschke product. More precisely, dimKα = n if and only if α is a
Blaschke product with n (not necessarily distinct) zeros.

D. Sarason proved that if dimKα = n, then dim T (α) = 2n − 1. He also
provided a basis for T (α) in that case (see [18, Thm. 7.1]). Proposition 2.5
gives an analogous result for H (α).

Note that if α is a finite Blaschke product, then α is analytic on a domain
containing the closed unit disk D and has an ADC at every λ ∈ ∂D. Hence, for

each λ ∈ D, kαλ ∈ Kα and the operators kα
λ
⊗ kαλ , k̃α

λ
⊗ k̃αλ belong to H (α).

Proposition 2.5 ([12], Thm. 7.9). Let α be a finite Blaschke product with
n > 0 zeros.

(a) The dimension of H (α) is 2n− 1.
(b) If λ1, . . . , λ2n−1 are distinct points from D, then the operators kα

λj
⊗kαλj ,

j = 1, . . . , 2n− 1, form a basis for H (α).

(c) If λ1, . . . , λ2n−1 are distinct points from D, then the operators k̃α
λj
⊗k̃αλj ,

j = 1, . . . , 2n− 1, form a basis for H (α).
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3. Matrix representations of THO’s on finite-dimensional
model spaces

In this section we describe matrix representations of operators from H (α).

3.1. Kernel basis and conjugate kernel basis

Let α be a finite Blaschke product with distinct zeros a1, . . . , an. Then the
kernel functions {kαa1 , . . . , k

α
an} form a basis for Kα and so do the conjugate

kernel functions {k̃αa1 , . . . , k̃
α
an}.

Let B be any linear operator on Kα. Using

〈kαaj , k̃
α
as〉 =

{
α′(as) for j = s,

0 for j 6= s,

one can verify that the matrix representation MB = (rs,p) of B with respect
to the kernel basis {kαa1 , . . . , k

α
an} is given by

rs,p =
(
α′(as)

)−1

〈Bkαap , k̃
α
as〉,(3.1)

and the matrix representation M̃B = (ts,p) of B with respect to the conjugate

kernel basis {k̃αa1 , . . . , k̃
α
an} is given by

ts,p = α′(as)
−1〈Bk̃αap , k

α
as〉.(3.2)

Theorem 3.1. Let α be a finite Blaschke product with n distinct zeros a1, . . .,
an. Let B be any linear operator on Kα. If MB = (rs,p) is the matrix repre-
sentation of B with respect to the basis {kαa1 , . . . , k

α
an}, then B ∈ H (α) if and

only if

(3.3) rs,p =
α′(as)(1− asa1)rs,1 − α′(a1)(1− a2

1)r1,1 + α′(a1)(1− a1ap)r1,p

α′(as)(1− asap)

for all 1 ≤ p, s ≤ n.

Proof. Let α be a finite Blaschke product with n distinct zeros a1, . . . , an and
let B ∈H (α). Fix 2n− 1 distinct points λ1, . . . , λ2n−1 from D \ {a1, . . . , an}.
By Proposition 2.5 the operators kα

λj
⊗ kαλj , j = 1, 2, . . . , 2n − 1, form a basis

for H (α) and there exist complex numbers c1, . . . , c2n−1 such that

B =

2n−1∑
j=1

cjk
α
λj
⊗ kαλj .

Hence

Bkαap =

2n−1∑
j=1

cj〈kαap , k
α
λj 〉k

α
λj

=

2n−1∑
j=1

cjk
α
ap(λj)k

α
λj
,
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and, by (3.1), we have

rs,p =
(
α′(as)

)−1

〈Bkαap , k̃
α
as〉 =

(
α′(as)

)−1 2n−1∑
j=1

cjk
α
ap(λj)

〈
kα
λj
, k̃αas

〉

=
(
α′(as)

)−1 2n−1∑
j=1

cjk
α
ap(λj)k̃αas(λj)

=
(
α′(as)

)−1 2n−1∑
j=1

dj
(1− λjap)(λj − as)

,

where dj = cjα(λj) does not depend on s and p. Observe that (λj 6= 1)

1− asap
(1− λjap)(λj − as)

=
1

1− λj

(
1− as
λj − as

− 1− ap
1− λjap

)
,

which gives

rs,p

=
(
α′(as)

)−1

(1− asap)−1
2n−1∑
j=1

dj
1− asap

(1− λjap)(λj − as)

=
(
α′(as)

)−1

(1−asap)−1
2n−1∑
j=1

dj

{
1− asa1

(1− λja1)(λj− as)
− 1− a1

2

(1− λja1)(λj− a1)

+
1− a1ap

(1− λjap)(λj − a1)

}
=

(
1− asa1

1− asap

)
rs,1 −

(
α′(a1)

α′(as)

1− a2
1

1− asap

)
r1,1 +

(
α′(a1)

α′(as)

1− a1ap
1− asap

)
r1,p.

This means that the matrix representation of every B ∈H (α) satisfies (3.3).
To prove the converse observe that V , the space of all n× n matrices satis-

fying (3.3), has dimension 2n−1 and contains V0 = {MB : B ∈H (α)}. Since,
by Proposition 2.5(a), the dimension of V0 is also equal to 2n − 1, we have
V = V0. �

Theorem 3.2. Let α be a finite Blaschke product with n distinct zeros a1, . . .,

an. Let B be any linear operator on Kα. If M̃B = (ts,p) is the matrix repre-

sentation of B with respect to the basis {k̃αa1 , . . . , k̃
α
an}, then B ∈ H (α) if and

only if

(3.4) ts,p =
α′(as)(1− asa1)ts,1 − α′(a1)(1− a2

1)t1,1 + α′(a1)(1− a1ap)t1,p
α′(as)(1− asap)

for all 1 ≤ p, s ≤ n.
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Proof. Let α be a finite Blaschke product with n distinct zeros a1, . . . , an and

let M̃B = (ts,p) be the matrix representation of B with respect to the basis

{k̃αa1 , . . . , k̃
α
an}. By (3.2) we get

ts,p = α′(as)
−1〈B∗kαas , k̃αap〉 =

α′(ap)

α′(as)
rp,s,

where (rp,s) is the matrix representation of B∗ with respect to {kαa1 , . . . , k
α
an}.

It is now easy to verify that (ts,p) satisfies (3.4) if and only if (rp,s) satisfies
(3.3). Since B ∈ H (α) if and only if B∗ ∈ H (α) (note that B∗ϕ = Bϕ#), this
completes the proof. �

3.2. Clark basis and modified Clark basis

For any λ ∈ ∂D the so-called Clark operator Uαλ is the operator from Kα

onto Kα defined by

Uαλ = Sα +
α(0) + λ

1− |α(0)|2
kα0 ⊗ k̃α0 .(3.5)

The operator Uαλ is unitary and the countable set of its eigenvalues consists
of ηm ∈ ∂D such that α has an ADC at ηm with

α(ηm) = αλ =
α(0) + λ

1 + α(0)λ
.(3.6)

If ηm is an eigenvalue of Uαλ , then the corresponding eigenvector is

kαηm(z) =
1− αλα(z)

1− ηmz

(for proofs and details see [5]).
If Uαλ has a pure point spectrum (which happens for example when α is a

Blaschke product with a countable set of limit points of its zeros, see [5, p.
185]), then the normalized eigenvectors

vαηm = ‖kαηm‖
−1kαηm

form an orthonormal basis for Kα. The basis {vαηm} is called the Clark basis
corresponding to λ ∈ ∂D (see [5] and [9]). The modified Clark basis is defined
by

eαηm = ωαmv
α
ηm ,

where

ωαm = e−
i
2 (arg ηm−arg λ).

The basis {eαηm} has the property Cαe
α
ηm = eαηm , where Cα is the conjugation

given by (2.1). It is easy to verify that if α is a finite Blaschke product with n
zeros, then (3.6) has precisely n distinct solutions η1, . . . , ηn ∈ ∂D.
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Theorem 3.3. Let α be a finite Blaschke product with n > 0 (not necessarily
distinct) zeros and let {vαη1 , . . . , v

α
ηn} be the Clark basis for Kα corresponding

to λ ∈ ∂D with ηp 6= ηs for all 1 ≤ p, s ≤ n. Let B be any linear operator on
Kα. If MB = (rs,p) is the matrix representation of B with respect to the basis
{vαη1 , . . . , v

α
ηn}, then B ∈H (α) if and only if

rs,p =

√
|α′(η1)|√
|α′(ηp)|

ηs − η1

ηs − ηp
rs,1 −

|α′(η1)|√
|α′(ηp)|

√
|α′(ηs)|

η1 − η1

ηs − ηp
r1,1

+

√
|α′(η1)|√
|α′(ηs)|

η1 − ηp
ηs − ηp

r1,p

for all 1 ≤ p, s ≤ n.

Proof. The proof is analogous to the proof of Theorem 3.1. The details are left
to the reader. �

As a corollary we obtain the matrix representation of B with respect to the
modified Clark basis.

Theorem 3.4. Let α be a finite Blaschke product with n > 0 (not necessarily
distinct) zeros and let {eαη1 , . . . , e

α
ηn} be the modified Clark basis for Kα corre-

sponding to λ ∈ ∂D with ηp 6= ηs for all 1 ≤ p, s ≤ n. Let B be any linear

operator on Kα. If M̃B = (ts,p) is the matrix representation of B with respect
to the basis {eαη1 , . . . , e

α
ηn}, then B ∈H (α) if and only if

ts,p =

√
|α′(η1)|√
|α′(ηp)|

ωαp
ωα1

ηs − η1

ηs − ηp
ts,1 −

|α′(η1)|√
|α′(ηp)|

√
|α′(ηs)|

ωαp
ωαs

η1 − η1

ηs − ηp
t1,1

+

√
|α′(η1)|√
|α′(ηs)|

ωα1
ωαs

η1 − ηp
ηs − ηp

t1,p

for all 1 ≤ p, s ≤ n.

Proof. Let B be any bounded linear operator on Kα. The proof follows from
Theorem 3.3 and the comparison of the matrix representations of B with re-
spect to the Clark basis and the modified Clark basis. �

Remark 3.5. By Theorem 3.1 the matrix representing a THO is determined by
the entries in the first row and the first column. A simple modification of the
proof shows that one can take any other row and any other column instead.
The same is true for Theorems 3.2–3.4.

4. Matrix representations of THO’s on some infinite-dimensional
model spaces

In this section we generalize the results from Section 3 to some infinite-
dimensional cases.
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4.1. Kernel and conjugate kernel bases

Let α be an infinite Blaschke product with uniformly separated zeros {am},
that is,

inf
k

∏
m6=k

∣∣∣∣ am − ak1− amak

∣∣∣∣ ≥ δ
for some δ > 0.

It is known (see [6, p. 151]) that a sequence of complex numbers {am} is
uniformly separated if and only if the transformation

f 7→ {f(am)
√

1− |am|2}(4.1)

maps H2 boundedly onto l2, the space of all complex square summable se-
quences. So if {am} satisfies (4.1), then there exists c > 0 such that

∞∑
m=1

|f(am)|2(1− |am|2) < c‖f‖2

for every f ∈ H2. Moreover, if {fm} is a sequence of complex numbers satisfy-
ing
∑∞
m=1 |fm|2(1−|am|2) <∞, then there exists f ∈ H2 such that f(am) = fm

for each m ≥ 1. The most general form of f is given by

f =

∞∑
m=1

fm
α′(am)

k̃αam + αh, h ∈ H2,

where the series converges in norm. In particular, the interpolation problem
f(am) = fm, m ≥ 1, has a unique solution from Kα given by

f =

∞∑
m=1

fm
α′(am)

k̃αam .

Every f ∈ Kα can thus be written as

f =

∞∑
m=1

f(am)

α′(am)
k̃αam =

∞∑
m=1

〈f, kαam〉
α′(am)

k̃αam ,(4.2)

and the family of conjugate kernel functions {k̃αam} forms a basis for Kα (see
[8, 16] for proofs and details). Similarly, {kαam} is a basis for Kα and each
f ∈ Kα can be written as

f =

∞∑
m=1

(
f̃(am)

α′(am)

)
kαam =

∞∑
m=1

〈f, k̃αam〉
α′(am)

kαam .

To see this, substitute f with f̃ = Cαf in (4.2) and apply Cα to both sides of
the resulting equation.
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Theorem 4.1. Let α be an infinite Blaschke product with uniformly separated
zeros {am} and let B be a bounded linear operator on Kα. If MB = (rs,p) is
the matrix representation of B with respect to the basis {kαam}, then B ∈H (α)
if and only if

rs,p =
α′(as)(1− asa1)rs,1 − α′(a1)(1− a2

1)r1,1 + α′(a1)(1− a1ap)r1,p

α′(as)(1− asap)
(4.3)

for all p, s ≥ 1.

Theorem 4.2. Let α be an infinite Blaschke product with uniformly separated

zeros {am} and let B be a bounded linear operator on Kα. If M̃B = (ts,p) is

the matrix representation of B with respect to the basis {k̃αam}, then B ∈H (α)
if and only if

ts,p =
α′(as)(1− asa1)ts,1 − α′(a1)(1− a2

1)t1,1 + α′(a1)(1− a1ap)t1,p
α′(as)(1− asap)

for all p, s ≥ 1.

Since the proof of Theorem 4.2 is the same as the proof of Theorem 3.2, we
only prove Theorem 4.1.

Proof of Theorem 4.1. Here the proof is based on Theorem 2.3. Let B be a
bounded linear operator on Kα. Recall that the matrix representation MB =
(rs,p) with respect to {kαam} is given by

rs,p =
(
α′(as)

)−1

〈Bkαap , k̃
α
as〉.

By Theorem 2.3, B belongs to H (α) if and only if there exist functions ψ, χ ∈
Kα such that

(4.4) B − S∗αBS∗α = ψ ⊗ kα0 + k̃α0 ⊗ χ.

The formula (4.4) can be expressed in terms of matrix representations with
respect to {kαam} as(

α′(as)
)−1

〈(B − S∗αBS∗α)kαap , k̃
α
as〉

=
(
α′(as)

)−1

〈(ψ ⊗ kα0 + k̃α0 ⊗ χ)kαap , k̃
α
as〉, s, p ≥ 1.

Since

S∗αk
α
ap = apk

α
ap and Sαk̃

α
as = ask̃

α
as

(see [18, Lemma 2.2]), we have

〈(B − S∗αBS∗α)kαap , k̃
α
as〉 = 〈Bkαap , k̃

α
as〉 − 〈BS

∗
αk

α
ap , Sαk̃

α
as〉

= (1− asap)〈Bkαap , k̃
α
as〉 = (1− asap)α′(as) rs,p.
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On the other hand,

〈(ψ ⊗ kα0 + k̃α0 ⊗ χ)kαap , k̃
α
as〉 = 〈kαap , k

α
0 〉〈ψ, k̃αas〉+ 〈kαap , χ〉〈k̃

α
0 , k̃

α
as〉

= ψ̃(as) + χ(ap).

Therefore, (4.4) holds if and only if there exist infinite sequences of complex

numbers {ψ̃s} and {χp} such that

(1− asap)α′(as) rs,p = ψ̃s + χp for all s, p ≥ 1,(4.5)

and
∞∑
s=1

|ψ̃s|2(1− |as|2) <∞,
∞∑
p=1

|χp|2(1− |ap|2) <∞.(4.6)

The functions ψ, χ from (4.4) are then given by

ψ =

∞∑
s=1

(
ψ̃s

α′(as)

)
kαas , χ =

∞∑
p=1

χp
α′(ap)

k̃αap .

If B belongs to H (α), then MB = (rs,p) satisfies (4.5) and a simple com-
putation shows that (rs,p) also satisfies (4.3).

To complete the proof we need to show that if (rs,p) satisfies (4.3), then
B ∈ H (α). To this end, it is enough to find sequences of complex numbers

{ψ̃s}, {χp} such that (4.5) and (4.6) hold.

Using (4.3) it can be verified that the sequences {ψ̃s}, {χp} satisfy (4.5) if
and only if they satisfy{

(1− asa1)α′(as) rs,1 = ψ̃s + χ1, s ≥ 1,

(1− a1ap)α′(a1) r1,p = ψ̃1 + χp, p > 1.
(4.7)

Fix arbitrary χ1. Then the sequences {ψ̃s}, {χp} satisfying (4.7), and so (4.5),
are clearly given by{

ψ̃s = (1− asa1)α′(as) rs,1 − χ1, s ≥ 1,

χp = (1− a1ap)α
′(a1) r1,p − ψ̃1, p > 1.

Moreover, such {ψ̃s}, {χp} also satisfy (4.6). Indeed,

∞∑
s=1

|ψ̃s|2(1− |as|2) ≤ C ·
∞∑
s=1

|α′(as)rs,1|2(1− |as|2) + C · |χ1|2
∞∑
s=1

(1− |as|2)

= C ·
∞∑
s=1

|CαBkαa1(as)|2(1− |as|2) + C ′ <∞,

and similarly for {χp}. Hence B ∈H (α). �
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4.2. Clark and modified Clark bases

To give an infinite-dimensional analogs of Theorems 3.3 and 3.4 we need the
following generalization of Theorem 2.3.

Theorem 4.3. Let c be a complex number. A bounded linear operator B
belongs to H (α) if and only if there exist functions ψ, χ ∈ Kα such that

B − S∗α,cBS∗α,c = ψ ⊗ kα0 + k̃α0 ⊗ χ,

where Sα,c = Sα + c(kα0 ⊗ k̃α0 ) is the modified compressed shift.

Proof. The proof is analogous to the proof of [18, Theorem 10.1] and we leave
the details to the reader. �

Recall that the Clark unitary operator Uαλ , λ ∈ ∂D, given by (3.5) is a
modified compressed shift, Uαλ = Sα,cλ with cλ = (α(0) + λ)/(1 − |α(0)|2).
Therefore, by Theorem 4.3, a bounded linear operator B on Kα belongs to
H (α) if and only if for every λ ∈ ∂D there exist functions ψ, χ ∈ Kα such that

B − (Uαλ )∗B(Uαλ )∗ = ψ ⊗ kα0 + k̃α0 ⊗ χ.(4.8)

Equation (4.8) can now be expressed in terms of matrix representations with
respect to the Clark basis corresponding to λ and a proof similar to the proof
of Theorem 4.1 can be given to show the following.

Theorem 4.4. Let α be an inner function such that Kα has a Clark basis
{vαηm} with ηp 6= ηs for all p, s ≥ 1. If MB = (rs,p) is the matrix representation
of a bounded linear operator B on Kα with respect to the basis {vαηm}, then
B ∈H (α) if and only if

rs,p =

√
|α′(η1)|√
|α′(ηp)|

ηs − η1

ηs − ηp
rs,1 −

|α′(η1)|√
|α′(ηp)|

√
|α′(ηs)|

η1 − η1

ηs − ηp
r1,1

+

√
|α′(η1)|√
|α′(ηs)|

η1 − ηp
ηs − ηp

r1,p

for all p, s ≥ 1.

A generalized version of Theorem 3.4 easily follows.

Theorem 4.5. Let α be an inner function such that Kα has a modified Clark

basis {eαηm} with ηp 6= ηs for all p, s ≥ 1. If M̃B = (ts,p) is the matrix represen-
tation of a bounded linear operator B on Kα with respect to the basis {eαηm},
then B ∈H (α) if and only if

ts,p =

√
|α′(η1)|√
|α′(ηp)|

ωαp
ωα1

ηs − η1

ηs − ηp
ts,1 −

|α′(η1)|√
|α′(ηp)|

√
|α′(ηs)|

ωαp
ωαs

η1 − η1

ηs − ηp
t1,1

+

√
|α′(η1)|√
|α′(ηs)|

ωα1
ωαs

η1 − ηp
ηs − ηp

t1,p

for all p, s ≥ 1.
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