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FINDING RESULTS FOR CERTAIN RELATIVES OF THE

APPELL POLYNOMIALS

Mahvish Ali and Subuhi Khan

Abstract. In this article, a hybrid family of polynomials related to the

Appell polynomials is introduced. Certain properties including quasi-
monomiality, differential equation and determinant definition of these

polynomials are established. Further, applications of Carlitz’s theorem
to these polynomials and to certain other related polynomials are con-

sidered. Examples providing the corresponding results for some members

belonging to this family are also considered.

1. Introduction and preliminaries

In 1956 Boas and Buck [7] studied a large class of generating functions of
polynomial sets. Some of their work appeared also in their earlier mimeo-
graphed reports which are not generally available. A rough statement of one
of the main results in Boas and Buck [7] is given below:

A polynomial set {pn(x)}n≥0 is said to be a Boas-Buck polynomial set, if it
has the following generating function [7]:

(1.1) A(t)ψ(xH(t)) =

∞∑
n=0

pn(x)
tn

n!
,

where A(t), ψ(t), H(t) are power series such that

A(t) =

∞∑
n=0

an
tn

n!
, a0 6= 0;(1.2)

ψ(t) =

∞∑
n=0

γn
tn

n!
, γn 6= 0, ∀ n,(1.3)

with ψ(t) not a polynomial and

(1.4) H(t) =

∞∑
n=0

hn
tn

n!
, h0 = 0 and h1 6= 0.
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Remark 1.1. The Boas-Buck polynomials set include such general classes as
Brenke polynomials Yn(x) [9] (for H(t) = t), Sheffer polynomials sn(x) [20]
(for ψ(t) = exp(t)), Appell polynomials An(x) [4] (for H(t) = t, ψ(t) = exp(t))
and some particular sets as certain constant multiples of the Jacobi, Laguerre
and Hermite polynomials [2].

An important contribution on obtaining generating functions of the Boas and
Buck type for orthogonal polynomials is given by Mourad Ismail [14]. Ceratin
other contributions related to these polynomials are given in [5, 6, 11].

The Appell polynomials [4] constitute an important class of polynomials
because of their remarkable applications in numerous fields. For recent appli-
cations of Appell polynomials in fields like probability theory and statistics,
approximating 3D-mappings, quantum physics, see [3, 8, 17,18,22,24].

In 1880, Appell [4] introduced a sequence of polynomials An(x), called the
Appell polynomials satisfying the relation

(1.5)
d

dx
An(x) = nAn−1(x), n = 1, 2, . . . .

The Appell polynomials can also be defined by means of the following ex-
ponential generating function:

(1.6) G(t) exp(xt) =

∞∑
n=0

An(x)
tn

n!
,

where G(t) has the expansion

(1.7) G(t) =

∞∑
n=0

αn
tn

n!
, α0 6= 0.

Many properties of conventional and generalized polynomials have been
shown to be derivable, in a straightforward way, within operational frame-
work which is a consequence of the monomiality principle. The suggestion of
the concept of poweroid by Steffensen [23] is behind the idea of monomiality.
Further, Dattoli [13] reformulated and developed the principle of monomiality.

The strategy underlined this point of view is simple but efficient. According
to the monomiality principle a polynomial set rn(x) (n ∈ N, x ∈ C) is quasi-
monomial, if there exist two operators Φ+ and Φ−, called multiplicative and
derivative operators respectively, which when acting on the polynomials rn(x)
yield:

(1.8) Φ+{rn(x)} = rn+1(x),

(1.9) Φ−{rn(x)} = n rn−1(x).

The operators Φ+ and Φ− satisfy the commutation relation

(1.10) [Φ−,Φ+] = 1̂

and thus display the Weyl group structure.
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If Φ+ and Φ− have differential realization, then it easily shown that the
differential equation satisfied by rn(x) is

(1.11) Φ+Φ−{rn(x)} = n rn(x).

Assuming here and in the sequel r0(x) = 1, then rn(x) can be explicitly
constructed as:

(1.12) rn(x) = Φ+n{1}
and consequently the generating function of rn(x) can be cast in the form

(1.13) G(x, t) = exp(tΦ+){1} =

∞∑
n=0

rn(x)
tn

n!
.

The Boas-Buck polynomials set defined by equation (1.1) is quasi-monomial
under the action of the following multiplicative and derivative operators [5]:

Φ+
p =

A′(H−1(σ))

A(H−1(σ))
+ xDxH

′(H−1(σ))σ−1,(1.14)

Φ−p = H−1(σ),(1.15)

where σ ∈ Λ(−1) is given by

(1.16) σ(1) = 0 and σ(xn) =
γn−1
γn

xn−1, n = 1, 2, . . .

and Λ(j), j ∈ Z denotes the space of operators acting on analytic functions
that augment or reduce the degree of every polynomial by exactly j for j ≥ 0
or j ≤ 0, respectively.

In this article, the Boas-Buck-Appell family is introduced and studied
through different aspects. In Section 2, some important properties including
quasi-monomiality and determinant definition of this family are established.
In Section 3, Carlitz’s theorem for mixed generating functions is extended to
the Boas-Buck-Appell family of order λ and also to some of its members. In
Section 4, examples of some members belonging to this family are given. A
recursion relation characterizing the Boas-Buck-Appell polynomials is derived
in the last section.

2. Boas-Buck-Appell polynomials

In this Section, the Boas-Buck-Appell polynomials are introduced by means
of the generating function. Further, quasi-monomial properties and determi-
nant definition of these polynomials are established.

On replacing x by the multiplicative operator Φ+
p of the Boas-Buck polyno-

mials pn(x) in the l.h.s. of generating function (1.6) of the Appell polynomials
An(x), the following expression is obtained:

(2.1) G(t) exp
(
Φ+
p t
)

=

∞∑
n=0

An
(
Φ+
p

) tn
n!
,
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which by virtue of equation (1.13) becomes

(2.2) G(t)

∞∑
n=0

pn(x)
tn

n!
=

∞∑
n=0

An
(
Φ+
p

) tn
n!
.

Using equation (1.1) in the l.h.s of equation (2.2) and denoting An
(
Φ+
p

)
in

the r.h.s. by the resultant Boas-Buck-Appell polynomials pAn(x), that is

(2.3) An
(
Φ+
p

)
= An

(
A′(H−1(σ))

A(H−1(σ))
+ xDxH

′(H−1(σ))σ−1
)

= pAn(x),

we find the following generating function for the Boas-Buck-Appell polynomi-
als:

(2.4) G(t)A(t)ψ(xH(t)) =

∞∑
n=0

pAn(x)
tn

n!
.

In consideration of H(t) = t, the Boas-Buck polynomials pn(x) reduce to
the Brenke polynomials Yn(x). Accordingly, taking H(t) = t in (2.4), we get
the following generating function for the Brenke-Appell polynomials YAn(x):

(2.5) G(t)A(t)ψ(xt) =

∞∑
n=0

YAn(x)
tn

n!
.

Similarly, taking ψ(t) = exp(t) and H(t) = t; ψ(t) = exp(t) in (2.4), we get
the following generating functions for the Sheffer-Appell polynomials sAn(x)

[16] and 2-Iterated Appell polynomials A
[2]
n (x) [15], respectively:

(2.6) G(t)A(t) exp(xH(t)) =

∞∑
n=0

sAn(x)
tn

n!
,

(2.7) G(t)A(t) exp(xt) =

∞∑
n=0

A[2]
n (x)

tn

n!
.

Further, using expansion (1.7) of G(t) in the l.h.s. of equation (2.2), sim-
plifying and then equating the coefficients of like powers of t in both sides of
the resultant equation, we get the following series definition of the Boas-Buck-
Appell polynomials pAn(x):

(2.8) pAn(x) =

n∑
k=0

(
n

k

)
αk pn−k(x).

In order to establish the quasi-monomial properties of Boas-Buck-Appell
polynomials pAn(x), we prove the following results:

Theorem 2.1. The Boas-Buck-Appell polynomials pAn(x) are quasi-monomial
with respect to the following multiplicative and derivative operators:

Φ+
pA = xH ′(H−1(σ))Dxσ

−1 +
A′(H−1(σ))

A(H−1(σ))
+
G′(H−1(σ))

G(H−1(σ))
,(2.9)
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Φ−pA = H−1(σ).(2.10)

Proof. Notice that equation (1.16) is equivalent to relation [5]

(2.11) σψ(xt) = tψ(xt),

so that, we can write

(2.12) H−1(σ)G(t)A(t)ψ(xH(t)) = tG(t)A(t)ψ(xH(t)).

Differentiating equation (2.4) partially with respect to t, the following ex-
pression is obtained:

(2.13)

(
x
H ′(t)

H(t)
Dx +

A′(t)

A(t)
+
G′(t)
G(t)

) ∞∑
n=0

pAn(x)
tn

n!
=

∞∑
n=0

pAn+1(x)
tn

n!
,

which on using equation (2.12) and equating the coefficients of like powers of t
in both sides of the resultant equation gives

(2.14)

(
xH ′(H−1(σ))Dxσ

−1 +
A′(H−1(σ))

A(H−1(σ))
+
G′(H−1(σ))

G(H−1(σ))

)
pAn(x)

= pAn+1(x).

In view of equations (1.8) and (2.14), assertion (2.9) follows.
Again, since the polynomials sets generated, respectively, by G(x, t) and

A(t)G(x, t), are associated with same lowering operator [5, Remark 3.2, p. 66].
Therefore, in view of equations (1.1) and (2.4), assertion (2.10) follows. �

Remark 2.1. Using equations (2.9) and (2.10) in monomiality equation (1.11),
we deduce the following consequence of Theorem 2.1:

Corollary 2.1. The Boas-Buck-Appell polynomials pAn(x) satisfy the follow-
ing differential equation:
(2.15)(

xH ′(H−1(σ))Dxσ
−1H−1(σ) +

A′(H−1(σ))

A(H−1(σ))
H−1(σ) +

G′(H−1(σ))

G(H−1(σ))
H−1(σ)− n

)
pAn(x) = 0.

Remark 2.2. TakingH(t) = t in equations (2.9), (2.10) and (2.15), the following
consequences of Theorem 2.1 are deduced:

Corollary 2.2. The Brenke-Appell polynomials YAn(x) are quasi-monomial
with respect to the following multiplicative and derivative operators:

Φ+
Y A = xDxσ

−1 +
A′(σ)

A(σ)
+
G′(σ)

G(σ)
,(2.16)

Φ−Y A = σ(2.17)

and satisfy the following differential equation:

(2.18)

(
xDx +

A′(σ)

A(σ)
σ +
G′(σ)

G(σ)
σ − n

)
YAn(x) = 0.
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Remark 2.3. Taking ψ(t) = exp(t) (for this case σ = Dx) in equations (2.9),
(2.10) and (2.15), the analogous results for the Sheffer-Appell polynomials

sAn(x) are obtained [16]. Again, taking H(t) = t, ψ(t) = exp(t) (for this
case σ = Dx) in equations (2.9), (2.10) and (2.15), the analogous results for

the 2-iterated Appell polynomials A
[2]
n (x) are obtained [15] .

In the last few years, the interest in Appell polynomials and their appli-
cations in different fields has significantly increased. Some authors were con-
cerned with finding new characterizations of Appell polynomials through new
approaches, see for example [1, 25].

The determinant form of the Appell polynomials is obtained by Costabile
and Longo in [12]. By using a similar approach [12, p. 1531 (Theorem 6)] and
taking help of equations (1.1) and (2.4), the following determinant definition
for the Boas-Buck-Appell polynomials pAn(x) is obtained:

Definition 2.1. The Boas-Buck-Appell polynomials pAn(x) of degree n are
defined by

(2.19) pA0(x) =
1

β 0

,

(2.20)

pAn(x) =
(−1)

n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p1(x) p2(x) · · · pn−1(x) pn(x)

β0 β1 β2 · · · βn−1 βn

0 β0
(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . . · · · . .

. . . · · · . .
0 0 0 · · · β0

(
n
n−1
)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . . ,

where

β0 =
1

α0
6= 0,

βn = − 1

α0

( n∑
k=1

(
n

k

)
αk βn−k

)
(n = 1, 2, . . .)

and pn(x) (n = 1, 2, . . . ) are the Boas-Buck polynomials of degree n defined
by equation (1.1).

Replacing pn(x) by Yn(x)(n = 1, 2, . . .) in the first row in determinant on the
r.h.s. of equation (2.20), the following determinant definition of the Brenke-
Appell polynomials YAn(x) is deduced:

Definition 2.2. The Brenke-Appell polynomials YAn(x) are defined by

(2.21) YA0(x) =
1

β 0

,
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(2.22)

YAn(x) =
(−1)

n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Y1(x) Y2(x) · · · Yn−1(x) Yn(x)

β0 β1 β2 · · · βn−1 βn

0 β0
(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . . · · · . .

. . . · · · . .
0 0 0 · · · β0

(
n
n−1
)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . . ,

where

β0 =
1

α0
6= 0,

βn = − 1

α0

( n∑
k=1

(
n

k

)
αk βn−k

)
(n = 1, 2, . . .)

and Yn(x) (n = 1, 2, . . . ) are the Brenke polynomials [9].

In the next Section, Carlitz Theorem is derived for the Boas-Buck-Appell
polynomials pAn(x).

3. Carlitz’s Theorem for the Boas-Buck-Appell polynomials

The Appell polynomials appear in different applications in pure and applied
mathematics. The typical examples of Appell polynomials besides the trivial
example {xn}∞n=0 are the Bernoulli, Euler and Hermite polynomials [2]. In par-
ticular, the Hermite polynomials sequence defined by the generating function

(3.1) exp

(
xt− t2

2

)
=

∞∑
n=0

Hen(x)tn

n!
, |t| <∞; |x| <∞,

is a unique sequence of Appell polynomials that is also orthogonal with respect
to a positive measure. We list certain members belonging to the Appell family
(which have an order) in Table 1:

Corresponding to the special polynomials given in Table 1, we get the resul-
tant Boas-Buck-Appell polynomials of order λ. We denote these polynomials by

pA
(λ)
n (x). Expressing G(t) as B(t))λ in equation (2.4), the generating function

for the Boas-Buck-Appell polynomials of order λ can be written as:

(3.2) (B(t))λA(t)ψ(xH(t)) =

∞∑
n=0

pA
(λ)
n (x)

tn

n!
.

Carlitz derived generating functions for certain one-and two-parameter co-
efficients [10, p. 521 (Theorem 1)]. Generating functions play an important
role in the investigation of various useful properties of the sequences which
they generate. Motivated by the importance of generating functions, here we
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Table 1. Certain members belonging to the Appell family

S. No. Name of the G(t) Generating function
polynomials

I. Hermite polynomials e
−νt2

2 (ν 6= 0) e−
νt2

2 ext =
∞∑
n=0

H
(ν)
k (x) t

n

n!

of variance ν [21]

II. Bernoulli polynomials
(

t
et−1

)a
(a 6= 0)

(
t

et−1

)a
ext =

∞∑
n=0

B
(a)
k (x) t

n

n!

of order a [21]

III. Euler polynomials
(

2
et+1

)a
(a 6= 0)

(
2

et+1

)a
ext =

∞∑
n=0

E
(a)
k (x) t

n

n!

of order a [21]

extend the Carlitz theorem for the Boas-Buck-Appell polynomials of order λ
by proving the following result:

Theorem 3.1. Let B(t), A(t), ψ(t), H(t) be arbitrary functions which are
analytic in the neighbourhood of the origin such that

(3.3) B(0) = b0, A(0) = a0, ψ(0) = γ0, H(0) = h0.

Then, for arbitrary µ independent of t, the following generating function for

the Boas-Buck-Appell polynomials of order λ, pA
(λ)
n (x) holds true:

(3.4)

∞∑
n=0

pA
(λ+µn)
n (x)

un

n!
=

(B(z))λ+1A(z)ψ(xH(z))

B(z)− µzB′(z)
,

where u = z(B(z))−µ.

Proof. Applying Taylor’s theorem in equation (3.2), we have

(3.5) pA
(λ)
n (x) = Dn

t {(B(t))λA(t)ψ(xH(t))}
∣∣
t=0

, Dt ≡
d

dt
,

so that

(3.6) pA
(λ+µn)
n (x) = Dn

t {(B(t))λ+µnA(t)ψ(xH(t))}|t=0.

Consider

(3.7) f(t) = (B(t))λA(t)ψ(xH(t))

and

(3.8) φ(t) = (B(t))µ.

Then equation (3.6) can be expressed as:

(3.9) pA
(λ+µn)
n (x) = Dn

t {f(t)φ(t)n}
∣∣
t=0

.
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Next, consider the Lagrange’s expansion [19, p. 146]:

(3.10)
f(z)

1− uφ′(z)
=

∞∑
n=0

un

n!
[Dn

t {f(t)φ(t)n}]
∣∣
t=0

,

where the functions f(t) and φ(t) are analytic about the origin and z is given
by

(3.11) z = uφ(z), φ(0) 6= 0.

Using equation (3.9) in the r.h.s. of equation (3.10), we have

(3.12)
f(z)

1− uφ′(z)
=

∞∑
n=0

pA
(λ+µn)
n (x)

un

n!
.

In view of equations (3.7), (3.8) and (3.11), assertion (3.4) follows. �

We note that for µ = 0, generating function (3.4) reduces to generating
function (3.2).

Remark 3.1. In view of Remark 1.1, the applications of Carlitz’s theorem for
the subclasses of the Boas-Buck-Appell polynomials of order λ are deduced as
following consequences of Theorem 3.1:

Corollary 3.1. Let B(t), A(t), ψ(t) be arbitrary functions which are analytic
in the neighbourhood of the origin such that

(3.13) B(0) = b0, A(0) = a0, ψ(0) = γ0.

Then, for arbitrary µ independent of t, the following generating function for

the Brenke-Appell polynomials of order λ, YA
(λ)
n (x) holds true:

(3.14)

∞∑
n=0

YA
(λ+µn)
n (x)

un

n!
=

(B(z))λ+1A(z)ψ(xz)

B(z)− µzB′(z)
,

where u = z(B(z))−µ.

Corollary 3.2. Let B(t), A(t), H(t) be arbitrary functions which are analytic
in the neighbourhood of the origin such that

(3.15) B(0) = b0, A(0) = a0, H(0) = h0.

Then, for arbitrary µ independent of t, the following generating function for

the Sheffer-Appell polynomials of order λ, sA
(λ)
n (x) holds true:

(3.16)

∞∑
n=0

sA
(λ+µn)
n (x)

un

n!
=

(B(z))λ+1A(z) exp(xH(z))

B(z)− µzB′(z)
,

where u = z(B(z))−µ.
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Corollary 3.3. Let B(t), A(t) be arbitrary functions which are analytic in the
neighbourhood of the origin such that

(3.17) B(0) = b0, A(0) = a0.

Then, for arbitrary µ independent of t, following generating function for the

2-iterated Appell polynomials of order λ, (A
[2]
n )(λ)(x) holds true:

(3.18)

∞∑
n=0

(A[2]
n )(λ+µn)(x)

un

n!
=

(B(z))λ+1A(z) exp(xz)

B(z)− µzB′(z)
,

where u = z(B(z))−µ.

In the next section, examples of some members belonging to the Boas-Buck-
Appell family are considered.

4. Examples

The results for some members belonging to the Boas-Buck-Appell family

pAn(x) are established by considering the following examples:

Example 4.1. Since, for G(t) = e
−νt2

2 , the Appell polynomial An(x) becomes
the Hermite polynomials of variance ν (Table 1 (I)). Therefore, for the same
choice of G(t), the Boas-Buck-Appell polynomials reduce to the Boas-Buck-

Hermite polynomials of variance ν denoted by pH
(ν)
n (x).

Thus, by taking the above expression of G(t) in equations (2.4), (2.9), (2.10),
(2.15) and (3.4), we find the following results for the Boas-Buck-Hermite poly-
nomials of variance ν:

Table 2. Results for pH
(ν)
n (x)

Generating function e
−νt2

2 A(t)ψ(xH(t)) =
∞∑
n=0

pH
(ν)
n (x) t

n

n!

Multiplicative and Φ+
pH(ν) = xH ′(H−1(σ))Dxσ

−1 + A′(H−1(σ))
A(H−1(σ)) − νH

−1(σ),

derivative operators Φ−
pH(ν) = H−1(σ)

Differential equation
(
xH ′(H−1(σ))Dxσ

−1H−1(σ) + A′(H−1(σ))
A(H−1(σ)) H

−1(σ)− ν(H−1(σ))2 − n
)
pH

(ν)
n (x) = 0

Carlitz type generating function
∞∑
n=0

pH
(ν+µn)
n (x)u

n

n! = e
−νz2

2 A(z)ψ(xH(z))
1+µz2 , u = z

(
e
−t2
2

)−µ

Example 4.2. Since, for G(t) =
(

t
et−1

)a
, the Appell polynomial An(x) be-

comes the Bernoulli polynomials of order a (Table 1 (II)). Therefore, for the
same choice of G(t), the Boas-Buck-Appell polynomials reduce to the Boas-

Buck-Bernoulli polynomials of order a denoted by pB
(a)
n (x).

Thus, by taking the above expression of G(t) in equations (2.4), (2.9), (2.10),
(2.15) and (3.4), we deduce the following results for the Boas-Buck-Bernoulli
polynomials of order a:
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Table 3. Results for pB
(a)
n (x)

Generating function
(

t
et−1

)a
A(t)ψ(xH(t)) =

∞∑
n=0

pB
(a)
n (x) t

n

n!

Multiplicative and Φ+
pB(a) = xH ′(H−1(σ))Dxσ

−1 + A′(H−1(σ))
A(H−1(σ)) +

a
(
eH
−1(σ)−1−H−1(σ)eH

−1(σ)
)

H−1(σ)(eH−1(σ)−1)
,

derivative operators Φ−
pB(a) = H−1(σ)

Differential equation

((
xH ′(H−1(σ))Dxσ

−1 + A′(H−1(σ))
A(H−1(σ))

)
H−1(σ) +

a
(
eH
−1(σ)−1−H−1(σ)eH

−1(σ)
)

(eH−1(σ)−1)
− n

)
pB

(a)
n (x) = 0

Carlitz type generating function
∞∑
n=0

pB
(a+µn)
n (x)u

n

n! =
( z
ez−1 )

a
A(z)ψ(xH(z))

1−µ( e
z−1−zez
ez−1 )

, u = z
(

t
et−1

)−µ

It should be noted that for a = 1, the Bernoulli polynomials of order a reduce
to the Bernoulli polynomials. Therefore, for a = 1, the Boas-Buck-Bernoulli
polynomials of order a reduce to the Boas-Buck-Bernoulli polynomials pBn(x).

It has been shown in [12], that for β0 = 1 and βi = 1
i+1 (i = 1, 2, . . . , n),

the determinant definition of the Appell polynomials An(x), gives the determi-
nant form of the Bernoulli polynomials Bn(x). Therefore, taking β0 = 1 and
βi = 1

i+1 (i = 1, 2, . . . , n) in equations (2.19) and (2.20), we get the following

determinant definition of the Boas-Buck-Bernoulli polynomials pBn(x):

Definition 4.1. The Boas-Buck-Bernoulli polynomials pBn(x) of degree n are
defined by

(4.1) pB0(x) = 1,

(4.2) pBn(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p1(x) p2(x) · · · pn−1(x) pn(x)

1 1
2

1
3 · · · 1

n
1

n+1

0 1
(
2
1

)
1
2 · · ·

(
n−1
1

)
1

n−1
(
n
1

)
1
n

0 0 1 · · ·
(
n−1
2

)
1

n−2
(
n
2

)
1

n−1
. . . · · · . .
. . . · · · . .
0 0 0 · · · 1

(
n
n−1
)
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . . ,

where pn(x) (n = 1, 2, . . .) are the Boas-Buck polynomials of degree n defined
by equation (1.1).

Example 4.3. Since, for G(t) =
(

2
et+1

)a
, the Appell polynomial An(x) be-

comes the Euler polynomials of order a (Table 1 (III)). Therefore, for the same
choice of G(t), the Boas-Buck-Appell polynomials reduce to the Boas-Buck-

Euler polynomials of order a denoted by pE
(a)
n (x).

Thus, by taking the above expression of G(t) in equations (2.4), (2.9), (2.10),
(2.15) and (3.4), we find the following results for the Boas-Buck-Euler polyno-
mials of order a:
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Table 4. Results for pE
(a)
n (x)

Generating function
(

2
et+1

)a
A(t)ψ(xH(t)) =

∞∑
n=0

pE
(a)
n (x) t

n

n!

Multiplicative and Φ+
pE(a) = xH ′(H−1(σ))Dxσ

−1 + A′(H−1(σ))
A(H−1(σ)) + aeH

−1(σ)

eH−1(σ)+1
,

derivative operators Φ−
pE(a) = H−1(σ)

Differential equation
(
xH ′(H−1(σ))Dxσ

−1H−1(σ) + A′(H−1(σ))
A(H−1(σ)) H

−1(σ) + aeH
−1(σ)

eH−1(σ)+1
H−1(σ)− n

)
pE

(a)
n (x) = 0

Carlitz type generating function
∞∑
n=0

pE
(a+µn)
n (x)u

n

n! =
( 2
ez+1 )

a
A(z)ψ(xH(z))

1+µ( zez

ez+1 )
, u = z

(
2

et+1

)−µ

It should be noted that for a = 1, the Euler polynomials of order a reduce to
the Euler polynomials. Therefore, for a = 1, the Boas-Buck-Euler polynomials
of order a reduce to the Boas-Buck-Euler polynomials pEn(x).

It has been shown in [12, p. 1540 (60)-(61)], that for β0 = 1 and βi =
1
2 (i = 1, 2, . . . , n) the determinant definition of the Appell polynomials An(x),
reduces to the determinant form of the Euler polynomials En(x). Therefore,
taking β0 = 1 and βi = 1

2 (i = 1, 2, . . . , n) in equations (2.19) and (2.20), we
get the following determinant definition of the Boas-Buck-Euler polynomials

pEn(x):

Definition 4.2. The Boas-Buck-Euler polynomials pEn(x) of degree n are
defined by

(4.3) pE0(x) = 1,

(4.4) pEn(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p1(x) p2(x) · · · pn−1(x) pn(x)

1 1
2

1
2 · · · 1

2
1
2

0 1 1
2

(
2
1

)
· · · 1

2

(
n−1
1

)
1
2

(
n
1

)
0 0 1 · · · 1

2

(
n−1
2

)
1
2

(
n
2

)
. . . · · · . .
. . . · · · . .
0 0 0 · · · 1 1

2

(
n
n−1
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . . ,

where pn(x) (n = 1, 2, . . .) are the Boas-Buck polynomials of degree n defined
by equation (1.1).

In the next section, characterization of the Boas-Buck-Appell polynomials
is given by a recursion relation.

5. Concluding remarks

A rough statement of one of the main results in Boas and Buck [7] is that
a necessary and sufficient condition for the polynomials pn(x) to have the gen-
erating function of the form (1.1) is that the sequences of numbers αk and βk
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exist such that, for n ≥ 1, the following recursion relation holds true:

(5.1) xp′n(x)− npn(x) = −
n−1∑
k=0

αk pn−1−k(x)− x
n−1∑
k=0

βk p
′
n−1−k(x).

The Boas’ and Buck’s work is presented with minor variations in notation by
Rainville [20, p. 14 (Theorem 50)]. A natural question arises that whether, we
can have the analogous result for the hybrid polynomials introduced as discrete
convolution of the Boas-Buck polynomials? The answer to this question is given
in the form of the following result:

Theorem 5.1. For the Boas-Buck-Appell polynomials pAn(x) defined by equa-
tion (2.4), with equations (1.2), (1.3), (1.4) and (1.7) holding and γn 6= 0, there
exist sequences of numbers σk, µk and ξk (independent of n) such that, for
n ≥ 1, the following recursion relation holds true:

x pA
′
n(x)− n pAn(x)(5.2)

= −
n−1∑
k=0

(
n

k + 1

)
(σk+µk)pAn−1−k(x)−x

n−1∑
k=0

(
n

k + 1

)
ξk pA

′
n−1−k(x),

where

(5.3)
tG′(t)
G(t)

=

∞∑
k=0

σk
tk+1

(k + 1)!
,

(5.4)
tA′(t)

A(t)
=

∞∑
k=0

µk
tk+1

(k + 1)!

and

(5.5)
tH ′(t)

H(t)
= 1 +

∞∑
k=0

ξk
tk+1

(k + 1)!
.

Proof. Consider

(5.6) F = G(t)A(t)ψ(xH(t)).

Then

(5.7)
∂F

∂x
= H(t)G(t)A(t)ψ′

and

(5.8)
∂F

∂t
= G(t)A′(t)ψ +A(t)G′(t)ψ + xH ′(t)G(t)A(t)ψ′.

Elimination of ψ and ψ′ from equations (5.6)-(5.8), gives

(5.9) xt
H ′(t)

H(t)

∂F

∂x
− t∂F

∂t
=

(
−tG

′(t)

G(t)
− tA

′(t)

A(t)

)
F.
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In view of equations (2.4) and (5.6), we have

(5.10) F =

∞∑
n=0

pAn(x)
tn

n!
.

Use of equations (5.3)-(5.5) and (5.10) in equation (5.9) yields[
1 +

∞∑
k=0

ξk
tk+1

(k + 1)!

][ ∞∑
n=0

x pA
′
n(x)

tn

n!

]
−
∞∑
n=0

n pAn(x)
tn

n!
(5.11)

= −

[ ∞∑
k=0

σk
tk+1

(k + 1)!
+ µk

tk+1

(k + 1)!

][ ∞∑
n=0

pAn(x)
tn

n!

]
,

which on simplification gives

∞∑
n=0

[x pA
′
n(x)− n pAn(x)]

tn

n!
(5.12)

= −
∞∑
n=1

n−1∑
k=0

(σk + µk)

(k + 1)!(n− k − 1)!
pAn−1−k(x)tn

− x
∞∑
n=1

n−1∑
k=0

ξk
(k + 1)!(n− k − 1)!

pA
′
n−1−k(x)tn.

Equating the coefficients of like powers of t in equation (5.12), we get asser-
tion (5.2). �

Remark 5.1. Since for H(t) = t, the Boas-Buck-Appell polynomials pAn(x)
become the Brenke-Appell polynomials YAn(x), therefore, from equation (5.5),
it follows that ξk = 0 and thus, the following result is obtained as consequence
of Theorem 5.1:

Corollary 5.1. For the Brenke-Appell polynomials YAn(x) defined by equation
(2.5), with equations (1.2), (1.3) and (1.7) holding and γn 6= 0, there exist
sequences of numbers σk and µk (independent on n) such that, for n ≥ 1, the
following recursion relation holds true:

(5.13) x YA
′
n(x)− n YAn(x) = −

n−1∑
k=0

(
n

k + 1

)
(σk + µk)YAn−1−k(x),

where

(5.14)
tG′(t)
G(t)

=

∞∑
k=0

σk
tk+1

(k + 1)!
,

(5.15)
tA′(t)

A(t)
=

∞∑
k=0

µk
tk+1

(k + 1)!
.
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Remark 5.2. Since for ψ(t) = exp(t), the Boas-Buck-Appell polynomials pAn(x)
become the Sheffer-Appell polynomials sAn(x), therefore, from equation (1.3),
it follows that γn = 1 6= 0. It should be noted that the Sheffer-Appell poly-
nomials sAn(x) satisfy the equation identical to equation (5.2) with equations
(5.3), (5.4) and (5.5) holding.

Remark 5.3. Since for ψ(t) = exp(t) and H(t) = t, the Boas-Buck-Appell poly-

nomials pAn(x) become the 2-iterated Appell polynomials A
[2]
n (x), therefore,

from equation (1.3), it follows that γn = 1 6= 0 and from equation (5.5), it
follows that ξk = 0. It should be noted that the 2-iterated Appell polynomials

A
[2]
n (x) satisfy the equation identical to equation (5.13) with equations (5.14)

and (5.15) holding.

Finally, to give an application of the recursion relation (5.2), we consider
the following example:

Example. For A(t) = 1
1−t , ψ(t) = exp(xt) and H(t) = −t

(1−t) , the Boas-

Buck polynomials become the Laguerre polynomials Ln(x) [2] and for G(t) =
1

1−t , the Appell polynomials become the truncated exponential polynomials

en(x) [2]. Therefore, making these substitutions in equation (2.4), the following
generating function for the Laguerre-truncated exponential polynomials Len(x)
is obtained:

(5.16)
1

(1− t)2
exp

(
−xt

(1− t)

)
=

∞∑
n=0

Len(x)
tn

n!
.

From the expressions of the G(t), A(t) and H(t), we find

(5.17)
tG′(t)
G(t)

=

∞∑
k=0

tk+1,
tA′(t)

A(t)
=

∞∑
k=0

tk+1,
tH ′(t)

H(t)
= 1 +

∞∑
k=0

tk+1.

On comparing equation (5.17) with equations (5.3)-(5.5), the following val-
ues are obtained:

(5.18) σk = µk = ξk = (k + 1)!.

Therefore, using equation (5.18) in equation (5.2), the following recurrence
relation for the Laguerre-truncated exponential polynomials Len(x) is obtained:

x Le
′
n(x)− n Len(x)(5.19)

= − 2

n−1∑
k=0

n!

(n− k − 1)!
Len−1−k(x)− x

n−1∑
k=0

n!

(n− k − 1)!
Le
′
n−1−k(x).

Examples of other members belonging to the Boas-Buck-Appell polynomials
can also be considered in the same way.

The hybrid family of Boas-Buck polynomials introduced and studied in this
article is important from the fact that the properties satisfied by this family
are analogous to that of the parent family.
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