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Abstract. The concepts of pseudocodeword and pseudoweight play a

fundamental role in the finite-length analysis of LDPC codes. The pseu-

doredundancy of a binary linear code is defined as the minimum number
of rows in a parity-check matrix such that the corresponding minimum

pseudoweight equals its minimum Hamming distance. By using the value
assignment of Chen and Kløve we present new results on the pseudocode-

word redundancy of binary linear codes. In particular, we give several

upper bounds on the pseudoredundancies of certain codes with repeated
and added coordinates and of certain shortened subcodes. We also in-

vestigate several kinds of k-dimensional binary codes and compute their

exact pseudocodeword redundancy.

1. Introduction

The concept of a pseudocodeword plays a key role in the finite-length analy-
sis of binary low-density parity-check (LDPC) codes under linear programming
(LP) decoding (or, to some extent, under message-passing iterative decoding),
see [3, 10]. The effect of pseudocodewords on the decoding behavior is mea-
sured by their pseudoweight [4, 10], which depends on the channel at hand.
Accordingly, the pseudocodeword redundancy (or pseudoredundancy) of a bi-
nary linear code is of interest, which is defined as the minimum number of rows
in a parity-check matrix such that the corresponding minimum pseudoweight is
as large as its minimum Hamming distance. The pseudoredundancy for various
channels has been studied, e.g., in [5], [9], and [11].

It is undoubtedly meaningful to determine either the pseudocodeword redun-
dancy or to give bounds on the pseudocodeword redundancy of a binary linear
code. However, it was shown in [11, Th. 3.2, Th. 3.5] that most codes have
infinite AWGNC and BSC pseudoredundancy. In contrast to this result, we
will determine the pseudoredundancies of some kinds of k-dimensional codes
and give bounds for certain constructed codes. Our main tool to study the
pseudoredundancy is the value assignment introduced by Chen and Kløve [1].
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Part of the paper has been presented at the 2014 IEEE International Sym-
posium on Information Theory (ISIT 2014), Honolulu, HI, USA [8]. In the
present version, we add Section 3, Theorem 9, and the detailed proof of some
other theorems. We also give a new proof of Theorem 14 by using an alternative
simple method.

The rest of the paper is organized as follows. In Section 2 we define pseu-
doweights for various channels and the notion of pseudoredundancy; we also
present the concept of value assignment. Section 3 contains a discussion of
codes based on repeating or adding coordinates and of shortened subcodes. In
Section 4 we determine the pseudoredundancies of certain k-dimensional codes
based on value assignment, generalising previous results significantly. Finally,
we conclude in Section 5.

2. Preliminaries

For a binary linear code C of length n, when analyzing LP decoding for a
binary-input output-symmetric channel, one may assume that the zero code-
word 0 has been sent; then, the probability of correct LP decoding depends on
the conic hull of the fundamental polytope, called the fundamental cone [3,10],
which depends on the given parity-check matrix of C.

Let H be an m × n parity-check matrix for C, where the m rows may be
linearly dependent. Let I = {1, . . . , n} and J = {1, . . . ,m} be the set of
column and row indices, respectively, and for each j ∈ J let Ij = {i ∈ I |
Hj,i 6= 0}. Then, the fundamental cone K(H) with respect to the parity-check
matrix H of C is given as the set of vectors x ∈ Rn that satisfy

∀j ∈ J ∀` ∈ Ij : x` ≤
∑
i∈Ij\{`} xi,

∀i ∈ I : xi ≥ 0.
(2.1)

The vectors x ∈ K(H) are called pseudocodewords of C with respect to the
parity-check matrix H.

The influence of a nonzero pseudocodeword on the decoding performance is
measured by its pseudoweight, which depends on the underlying channel. For
x = (x1, . . . , xi, . . . , xn) ∈ Rn, let supp(x) = {i | xi 6= 0}. The BEC (binary
erasure channel), AWGNC, BSC pseudoweights and max-fractional weight of
a nonzero pseudocodeword x ∈ K(H) are defined as follows [4, 10]:

wBEC(x) = |supp(x)|,

wAWGNC(x) =
(
∑
i∈I xi)

2∑
i∈I xi

2 ,

letting x′ be a vector in Rn with the same components as x but in nonincreasing
order for i − 1 < ξ ≤ i, where 1 ≤ i ≤ n, letting φ(ξ) = x′i and defining

Φ(ξ) =
∫ ξ
0
φ(ξ′)dξ′,

wBSC(x) = 2Φ−1(Φ(n)/2),
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wmaxfrac(x) =

∑
i∈I xi

maxi∈I xi
.

For binary vectors x ∈ {0, 1}n \ {0} one has

wBEC(x) = wAWGNC(x) = wBSC(x) = wmaxfrac(x) = wH(x),

where wH(x) denotes the Hamming weight of x.
Define the minimum pseudoweight of a code C with respect to a parity-check

matrix H as
wmin(H) = min

x∈K(H)\{0}
w(x),

where w(x) may represent any one of the four pseudoweights (it is a fact that
wmin(H) is indeed attained on K(H) \ {0} [10]). The minimum pseudoweight
wmin(H) can be seen as a first-order measure of decoding error-correcting per-
formance of a code C given by the parity-check matrix H under LP decoding.
We note that all four minimum pseudoweights are upper bounded by d(C), the
minimum distance of C.

Definition 1. The pseudocodeword redundancy, or briefly the pseudoredun-
dancy, ρ(C), of a binary linear [n, k, d] code C is defined as

ρ(C) = inf{#rows(H) | H is a parity-check matrix of C, wmin(H) = d},
where inf ∅ is defined as ∞; here wmin(H) stands for one of the four pseu-
doweights, and we use accordingly the term BEC, AWGN, BSC, or max-
fractional pseudoredundancy.

It is obvious that ρ(C) ≥ n− k for any [n, k, d] code C. Furthermore, for any
binary linear code C it holds [11, Th. 2.5] that

(2.2)
ρmaxfrac(C) ≥ ρAWGNC(C) ≥ ρBEC(C),
ρmaxfrac(C) ≥ ρBSC(C) ≥ ρBEC(C).

The value assignment, which was first introduced in [1], is our main tool for
investigating the pseudoredundancy. It is given as follows.

Definition 2. A value assignment is a map

m(·) : PG(k − 1, q) −→ N = {0, 1, 2, . . . }
from the (k− 1)-dimensional projective space PG(k− 1, q) over the finite field
GF(q) to N, the set of nonnegative integers. For a point p ∈ PG(k − 1, q), we
call m(p) the value of p.

In this paper, we view points of PG(k − 1, q) as column vectors, so that we
may use them to construct generator matrices for linear codes. On the other
hand, vectors over the real field (as we have seen earlier) or over finite fields
(such as codewords) are all row vectors.

In particular, if G is a k × n generator matrix of a linear [n, k] code over
GF(q), then the columns of G can be viewed as points of PG(k − 1, q), and
for any p ∈ PG(k − 1, q) we define m(p) as the number of occurrences of p as
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columns of G (note that G may have repeating columns, for which the corre-
sponding point p of PG(k−1, q) has a value greater than 1, while if p does not
appear in G, then m(p) = 0). Thus viewing the columns of a generator matrix
of a linear [n, k] code as a multiset of points of the projective space PG(k−1, q),
this multiset defines a value assignment. Conversely, any value assignment
m(·) (or equivalently, a sequence of nonnegative integers z1, z2, . . . , zN , where
zi = m(pi) for pi ∈ PG(k− 1, q) and N = (qk − 1)/(q− 1) is the cardinality of
PG(k − 1, q)) uniquely determines a k × n matrix G (up to code equivalence),
where n is the number of points p (each p counted m(p) times) of the projective
space PG(k−1, q). The columns of G form a multiset of points of PG(k−1, q),
that is, the columns of G consist of the points p with positive values and each
of them repeats m(p) times. Therefore, the value assignment defines a gener-
ator matrix G and thus an [n, k] code (up to code equivalence) if the matrix
has rank k. Note that if C is the [n, k] code determined by a value assign-
ment m(·), then from the above discussion we deduce the important property∑
p∈PG(k−1,q)m(p) = n.

Now, since equivalent codes lead to equivalent dual codes and thus equivalent
codes have the same pseudoredundancy, it suffices to use the value assignment
to construct different equivalent codes for studying the pseudoredundancy.

3. Codes based on repeating and adding coordinates and shortened
subcodes

In this section, we will give several bounds on the pseudoredundancies of
codes obtained by increasing the number of coordinates and of certain shortened
subcodes by using the value assignment.

We remark that repeating coordinates is a useful method to construct a
code. For example, any binary linear constant-weight code (that is, all the
nonzero codewords have the same weight) is obtained from a simplex code
by repeating each coordinate equally times [6], or equivalently, any binary
constant-weight code consists of copies of the simplex code. Furthermore, a
recent paper [7] shows that a large class of codes called relative constant-weight
codes, which have applications to secret sharing schemes, can be obtained by
repeating coordinates.

In [2] the authors studied the effect of repeating coordinates on the Tanner
graph. In particular, [2, Lem. 3, Prop. 4] shows that any linear cycle-free code
with rate ≤ 0.5 can be obtained from a linear cycle-free code with rate > 0.5 by
repeating coordinates. Thus, repeating coordinates is also a useful operation,
related to the Tanner graph itself.

Assume that G is a generator matrix of an [n, k, d] code C, and the value
assignment m(·) is defined from G (as discussed in Section 2). Then any code-
word c ∈ C may be written as c = uG for some u ∈ GF(2)k; denote by u⊥

the set of points in PG(k − 1, 2) that are perpendicular to u (according to the
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usual inner product), and let

Tc = {p ∈ u⊥ | m(p) ≥ 1} and Tc = u⊥ \ Tc = {p ∈ u⊥ | m(p) = 0}.

Note that Tc corresponds to those column indices i of G where ci = 0. Then,
we have:

Theorem 3. Let G, C, and m(·) be as above and let c be any codeword of C
with minimum weight d.

(1) Define an [n′, k] code C′ generated by the matrix G′ obtained from G
by increasing the values of some of the points p ∈ Tc. Then,

ρ(C′) ≤ ρ(C) + (n′ − n)

for the max-fractional pseudoweight and for the BEC pseudoweight.
(2) Define an [n′, k] code C′ generated by the matrix G′ obtained by adding

the points of the set Tc to the columns of G. If each added point p ∈ Tc
repeats at least d(1− 1/k)de times in the columns of G′, then

ρ(C′) ≤ ρ(C) + (n′ − n)

for the max-fractional pseudoweight and for the BEC pseudoweight.

Proof. The proof for the BEC pseudoweight is very similar to that for the
max-fractional pseudoweight. We give a detailed proof for the max-fractional
pseudoweight below.

To prove (1), up to code equivalence, we may assume that Tc is the set of
the first t columns (points) of G, where 1 ≤ t ≤ n−1. From the assumption, it
follows that C′ is an [n′, k, d] code that is generated by G′, for which the value
assignment m′(pi) ≥ m(pi) for any 1 ≤ i ≤ t. Assume m′(pi)−m(pi) = θi for
1 ≤ i ≤ t and let H be the parity-check matrix with ρ(C) rows of C. Put the
points pi for 1 ≤ i ≤ t in order after the n-th column of G to obtain G′, and
each point pi, 1 ≤ i ≤ t, repeats θi times, respectively. Construct a matrix H ′

as

H ′ =


H
∗ H1

∗
. . .

∗ Ht

 ,

where Hi is an identity matrix of order θi, and “∗” corresponding to Hi has
entries one at the i-th column of H for 1 ≤ i ≤ t. It can be checked that H ′ is a
matrix with ρ(C)+

∑t
i=1 θi = ρ(C)+(n′−n) rows and of rank (n−k)+

∑t
i=1 θi =

(n−k)+(n′−n) = n′−k. Furthermore, H ′G′T = 0, thus, H ′ is a parity-check
matrix of C′.

Assume now that x ∈ K(H ′). Then we may write x = (y, z), where y =

(y1, . . . , yn) ∈ K(H) and z = (z1, . . . , zn′−n) ∈ Rn′−n. Note that z may be
rewritten as z = (y1, . . . , y1, . . . , yt, . . . , yt) where each yi, 1 ≤ i ≤ t, repeats θi
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times, respectively. Thus, for any x ∈ K(H ′), we have

w(x) =

∑n
j=1 yj +

∑n′−n
i=1 zi

maxj,i{yj , zi}

=

∑n
j=1 yj +

∑t
i=1 θiyi

maxj{yj}

≥
∑n
j=1 yj

maxj{yj}
≥ wmin(H) = d.

Thus, wmin(H ′) ≥ d = d(C′), and so the result holds.

For (2), it follows from the assumption that C′ is an [n′, k, d] code that is
generated by G′, where G′ is obtained by adding t points pi in order, 1 ≤ i ≤ t,
of the set Tc to the columns of G and assuming that each point pi repeats
θi ≥ d(1 − 1/k)de times, respectively. Since C is a k-dimensional code, there
exist basis points b1, . . . , bk in the columns of G, and we may suppose without
loss of generality that bj is in the j-th position in G for 1 ≤ j ≤ k. Write each

point pi as pi =
∑k
j=1 cijbj and denote the support set by Ai := {j | cij =

1} ⊂ {1, . . . , k} for 1 ≤ i ≤ t.
Let H be the parity-check matrix of C with ρ(C) rows. Construct a matrix

H ′ as

H ′ =


H ′′

h1
...
ht

 ,

where

H ′′ =


H

H1 . . .

Ht

 ;

here, each Hi, 1 ≤ i ≤ t, is a (θi − 1)× θi submatrix whose entries are defined
as follows

(3.1) (Hi)st =

{
1 if t ∈ {s, s+1},
0 otherwise,

and each hi, 1 ≤ i ≤ t, is a binary vector with coordinate positions of hi equal
to one whenever the position is in Ai or the position corresponds to the first
column of Hi.

Since
∑t
i=1 θi = n′ − n, the matrix H ′ is a (ρ(C) + (n′ − n)) × n′ matrix

of rank n − k + (n′ − n) = n′ − k. Furthermore, H ′G′T = 0, thus, H ′ is a
parity-check matrix of C′.
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Let x ∈ K(H ′). Then, x may be written as x = (y, z), where y = (y1, . . . , yn)

∈ K(H), and z ∈ Rn′−n. Note that z may be written as z = (z1, . . . , z1, . . . , zt,
. . . , zt), and each zi, 1 ≤ i ≤ t, repeats θi times, respectively.

If maxj,i{yj , zi} = maxj{yj}, where 1 ≤ j ≤ n and 1 ≤ i ≤ t, then

w(x) =

∑n
j=1 yj +

∑t
i=1 θizi

maxj,i{yj , zi}

=

∑n
j=1 yj +

∑t
i=1 θizi

maxj{yj}

≥
∑n
j=1 yj

maxj{yj}
≥ wmin(H) = d = d(C′) (by y ∈ K(H)).

If maxj,i{yj , zi} = maxi{zi} = zi0 , then by the fundamental cone inequali-
ties (2.1) we have zi0 ≤

∑
j∈Ai0

yj ≤ kmaxj{yj}, and since θi0 ≥ (1 − 1/k)d

we conclude

w(x) =

∑n
j=1 yj +

∑t
i=1 θizi

maxj,i{yj , zi}

=

∑n
j=1 yj +

∑t
i=1 θizi

zi0

≥
∑n
j=1 yj

zi0
+ θi0

≥
∑n
j=1 yj

kmaxj{yj}
+ θi0

≥ (1/k)d+ (1− 1/k)d (by y ∈ K(H))

= d = d(C′).

Thus, wmin(H ′) ≥ d(C′) in any case, and so the result follows. �

Remark 4. It appears to be an open problem whether the above theorem also
holds for the other two pseudoweights.

Let C be a binary linear code of length n and let I ′ ⊂ I = {1, 2, . . . , n} be
a subset of I. Define

CI′ = {c ∈ C | supp(c) ⊂ I ′},
which is the shortened subcode of C supported by I ′. Regarding the pseudore-
dundancy of the shortened subcode CI′ , the result is as follows.

Theorem 5. Let C be an [n, k, d] code and let c ∈ C be any codeword of min-
imum weight d. Then, for any shortened subcode CI′ containing the codeword
c, we have

ρ(CI′) ≤ ρ(C) + (n− |I ′|)
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for all the four pseudoweights.

Proof. Let H be a parity-check matrix of C with ρ(C) rows and let HI′ be the
submatrix of H consisting of the columns corresponding to I ′. Define C′I′ as
the code obtained by puncturing those columns of CI′ corresponding to I \ I ′.
Then it can be checked that HI′ is a parity-check matrix of C′I′ . Since C′I′ is a
linear code with minimum distance d according to the assumption, and since
for any x ∈ K(HI′) and (x, 0) ∈ Rn we have (x, 0) ∈ K(H), it follows that

wmin(HI′) ≥ wmin(H) = d(C) = d = d(C′I′).
Thus, ρ(C′I′) ≤ ρ(C). Then, using the proof of Lemma 4.1 in [11], we get
ρ(CI′) ≤ ρ(C′I′) + (n− |I ′|) ≤ ρ(C) + (n− |I ′|). �

A code C is called subcode-complete if any subcode D of C can be written as
D = CI′ for some I ′ ⊂ I. Define supp(D) =

⋃
c∈D supp(c). Since supp(D) =⋂

{I ′ | CI′ ⊃ D}, it follows that a code C is subcode-complete if and only if
D = Csupp(D) for any subcode D of C. The following result gives a judging rule
for a code to be subcode-complete by using the value assignment.

Theorem 6. A code C with value assignment m(·) is subcode-complete if and
only if m(p) > 0 for all p ∈ PG(k − 1, 2).

Proof. Let C be subcode-complete. Assume that G is a generator matrix corre-
sponding to m(·). If there exists a point p0 such that m(p0) = 0, then consider
the (k − 1)-dimensional subspace (p0)⊥ of GF(2)k, where

(p0)⊥ = {v | v is perpendicular to p0}.
It follows that D = {c | c = vG and v ∈ (p0)⊥} is a (k − 1)-dimensional
subcode of C. Since m(p0) = 0, we get supp(D) = supp(C). Thus, D 6=
Csupp(D) = Csupp(C) = C, a contradiction to that C is subcode-complete.

Conversely, suppose that m(p) > 0 for each p ∈ PG(k − 1, 2) and consider
any r-dimensional (1 ≤ r ≤ k) subcode D. Note that a generator matrix of D
can be written as Ur×kG for some matrix Ur×k. Denote

(Ur×k)⊥ = {p | p ∈ PG(k − 1, 2) and p is perpendicular to each row of Ur×k}.
Then, (Ur×k)⊥ is a (k − r − 1)-dimensional subspace of PG(k − 1, 2).

Since m(p) > 0 for each p ∈ PG(k − 1, 2), we get that the set

W = {p | p ∈ (Ur×k)⊥ and m(p) > 0}
is equal to the (k − r − 1)-dimensional projective subspace (Ur×k)⊥. Ob-
serve that supp(D) corresponds to those columns of G (considered as points of
PG(k − 1, 2)) which are not contained in W = (Ur×k)⊥. Thus,

Csupp(D) = {c | c = vG and v ∈ GF(2)k is

perpendicular to each point in W = (Ur×k)⊥}

= {c | c = vG and v ∈ GF(2)k is
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a linear combination of the rows of Ur×k}
= D.

Thus, C is subcode-complete. �

From Theorems 5 and 6, one gets the following result.

Corollary 7. Let C be a subcode-complete [n, k, d] code and let c be any code-
word with minimum weight d. Then, for any subcode D containing c, there
holds

ρ(D) ≤ ρ(C) + (n− | supp(D)|)
for all the four pseudoweights.

We may show that some special subcode-complete codes have finite pseu-
doredundancy and one example of such codes is a binary linear constant-weight
code. Since any binary linear constant-weight code consists of copies of a binary
simplex code, or equivalently, the value assignment of a linear constant-weight
code takes the same value at each point p ∈ PG(k − 1, 2), a linear constant-
weight code is subcode-complete by Theorem 6. In [11] it is shown that a
binary simplex code has finite pseudoredundancy as follows.

Lemma 8 ([11, Prop. 7.8]). For k ≥ 2, the [2k − 1, k, 2k−1] simplex code C
satisfies

ρ(C) ≤ (2k − 1)(2k−1 − 1)

3
for all the four pseudoweights.

In the proof of Lemma 8 (see [11]), a parity-check matrix H ′ of C is chosen
such that the rows of H ′ consist of all the codewords of the Hamming code
(the dual code of the simplex code C) with Hamming weight equal to 3. In
our framework, the value assignment of the simplex code C satisfies m(p) = 1
for any p ∈ PG(k − 1, 2), that is, the columns of a generator matrix of C are
exactly all the different points in PG(k− 1, 2). By using such a framework, we
may give an alternative explanation of the bound in ρ(C) in Lemma 8. Since
any row of H ′ can be viewed as a linear relation of three different columns of
the generator matrix of C, any row of H ′ can also be viewed as a line (spanned
by two projective points) in PG(k − 1, 2). Thus, the number of rows in H ′

equals the number of lines in PG(k − 1, 2), which is 1
3 (2k − 1)(2k−1 − 1).

By using Lemma 8 and the structure of a linear constant-weight code, we
obtain:

Theorem 9. Any binary linear [n, k, d] constant-weight code C satisfies

ρ(C) ≤ n+
(2k − 1)(2k−1 − 4)

3

for all the four pseudoweights.
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Proof. Assume the value assignment of the given binary [n, k, d] constant-
weight code is m(·). Then, m(·) takes the same value at each point p ∈
PG(k − 1, 2), and then one may get that n = (2k − 1)m(p) and d = 2k−1m(p)
for any point p ∈ PG(k − 1, 2).

Arrange a generator matrix G of the constant-weight code as follows: put
each point p ∈ PG(k − 1, 2) once in some fixed order in the columns of G;
and then, in the same order, repeat each of these points m(p)− 1 times in the
columns of G. According to such a matrix G, a parity-check matrix H of C can
be constructed as follows:

H =

(
H ′ 0
∗ I

)
,

where H ′ is the parity-check matrix of the simplex code given after Lemma
8, 0 stands for a 1

3 (2k − 1)(2k−1 − 1)× (m(p)− 1)(2k − 1) zero matrix, and I

stands for a (m(p)− 1)(2k − 1)× (m(p)− 1)(2k − 1) identity matrix; finally, ∗
stands for a (m(p)− 1)(2k − 1)× 1

3 (2k − 1)(2k−1 − 1) matrix, which is written
as

∗ =

 H1

...
H2k−1

 ,

where each Hi, 1 ≤ i ≤ 2k − 1, is an (m(p)− 1)× 1
3 (2k − 1)(2k−1 − 1) matrix,

which has entries zero except for its i-th column, whose entries are all equal to
one.

It can be checked that H is a matrix satisfying HGT = 0 and

rank(H) = rank(H ′) + (m(p)− 1)(2k − 1)

= (2k − 1)− k + (m(p)− 1)(2k − 1)

= m(p)(2k − 1)− k = n− k.
Thus, H is a parity-check matrix of C.

For this parity-check matrix H, let x ∈ K(H). Then, according to the
fundamental cone inequalities (2.1), x may be written as x = (y, z), where

y = (y1, . . . , y2k−1) ∈ K(H ′), and z = (z1, . . . , zn−2k+1) ∈ Rn−2k+1 is obtained
from y by repeating (m(p)− 1) times each coordinate of y. Thus, wmaxfrac(x)
can be computed as follows.

wmaxfrac(x) =

∑2k−1
i=1 yi +

∑n−2k+1
j=1 zj

maxi,j{yi, zj}

=

∑2k−1
i=1 yi + (m(p)− 1)

∑2k−1
i=1 yi

maxi{yi}

= m(p)

∑2k−1
i=1 yi

maxi{yi}
= m(p)w(y)
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≥ m(p)2k−1 = d (by y ∈ K(H ′) and Lemma 8).

Thus, wmin(H) ≥ d for the max-fractional pseudoweight. Since H has

1

3
(2k − 1)(2k−1 − 1) + (m(p)− 1)(2k − 1) = n+

1

3
(2k − 1)(2k−1 − 4)

rows, the result follows from (2.2). �

4. k-dimensional codes constructed by value assignment

In this section, we will proceed to determine the pseudocodeword redundan-
cies of certain k-dimensional binary codes by making use of the value assign-
ment.

Let C be an [n, k] binary code determined by a value assignment m(·). Recall
from Section 2 the basic fact that∑

p∈PG(k−1,2)
m(p) = n.

We will use and extend the following results.

Lemma 10 ([11, Lem. 6.1]). Let H be a parity-check matrix of C such that
every row in H has weight 2. Then:

(1) There is an equivalence relation on the set I of column indices of H
such that for a vector x ∈ Rn with nonnegative coordinates, we have
x ∈ K(H) if and only if x has equal coordinates within each equivalence
class.

(2) The minimum distance of C is equal to its minimum BEC, AWGNC,
BSC, and max-fractional pseudoweights with respect to H, i.e., d(C) =
wmin(H).

Lemma 11 ([11, Prop. 6.2]). Let H be an m × n parity-check matrix of C,

and assume that the m − 1 first rows in H have weight 2. Denote by H̃ the
(m−1)×n matrix consisting of these rows, and consider the equivalence relation

of the second case of Lemma 10 with respect to H̃, and assume that Im (which
is defined in Section 2) intersects each equivalence class in at most one element.
Then, the minimum distance of C is equal to its minimum BEC, AWGNC, BSC,
and max-fractional pseudoweights with respect to H, i.e., d(C) = wmin(H).

Using these lemmas, in [11, Cor. 6.4] it was shown that all 2-dimensional bi-
nary codes C with length n have pseudoredundancy ρ(C) = n−2, and the proof
was conducted according to the analysis of the supports of the two codewords
generating the 2-dimensional code.

By the framework of the value assignment, we may consider the different
cases of the supports of the two codewords generating the 2-dimensional code
as different points in PG(1, 2). Generalizing this idea, one may consider for each
point occurring in the columns of a generator matrix of C the corresponding
equivalence class from Lemma 10, and the size of this equivalence class is
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exactly the value of the corresponding value assignment at this point. In such
a framework, Im in the parity-check matrix in Lemma 11 is exactly the linear
relation among different points in the columns of the generator matrix of C.

Using the above stated techniques and Lemmas 10 and 11, we will in this
section construct several kinds of [n, k] codes whose pseudoredundancies are
equal to n− k. The first result is:

Theorem 12.

(1) For any k linearly independent points pi ∈ PG(k − 1, 2), 1 ≤ i ≤ k, if
a value assignment m(·) satisfies

m(p) =

{
zi ≥ 1 if p = pi, 1 ≤ i ≤ k,
0 otherwise,

and there exists some 1 ≤ i0 ≤ k such that m(pi0) = zi0 ≥ 2, then the
[n, k] code C determined by m(·) satisfies

ρ(C) =
k∑
i=1

zi − k = n− k

for all the four pseudoweights.
(2) For any k + 1 points pi ∈ PG(k − 1, 2), 1 ≤ i ≤ k + 1, such that the

points pi, 1 ≤ i ≤ k, are linearly independent, if a value assignment
satisfies

m(p) =

{
zi ≥ 1 if p = pi, 1 ≤ i ≤ k + 1,

0 otherwise,

then the [n, k] code C determined by m(·) satisfies

ρ(C) =
k+1∑
i=1

zi − k = n− k

for all the four pseudoweights.

Proof. For (1), up to code equivalence, we may arrange a generator matrix G
of C in such a way that the first m(p1) columns of G are the point p1, the next
m(p2) columns of G are the point p2, and in such an order, one proceeds to put
the point pk in the last m(pk) columns of G. For this matrix G, we construct
a matrix H in block diagonal form

H =

H1. . .
Hk

 ,

where Hi is an (m(pi) − 1) ×m(pi) submatrix whose entries are defined as in
(3.1). It can be checked that H is an (n − k) × n matrix of rank n − k and
HGT = 0. Thus, H is a parity-check matrix of C, and so ρ(C) = n − k by
Lemma 10.
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For (2), since the points pi for 1 ≤ i ≤ k are a basis for PG(k − 1, 2),
one may write pk+1 as a linear combination of these basis points. Up to code
equivalence, one may write pk+1 =

∑s
j=1 pj for s ≤ k. Arrange a generator

matrix G of C similarly to the proof of (1), that is, the first m(p1) columns are
the point p1, the next m(p2) columns are the point p2, and in such an order,
the last m(pk+1) columns are the point pk+1. Then, we may construct a matrix
H as

H =

(
H ′

h

)
,

where the submatrix H ′ is the block diagonal one

H ′ =


H1

. . .
Hk

Hk+1

 ,

and Hi for 1 ≤ i ≤ k + 1 is an (m(pi)− 1)×m(pi) matrix defined as in (3.1),
and h is a binary row vector whose coordinate positions corresponding to the
first column of each Hi for 1 ≤ i ≤ t and to the first column of Hk+1 are equal
to one. It can be checked that H is an (n − k) × n matrix of rank n − k and
HGT = 0, and so H is a parity-check matrix of C. Thus, ρ(C) = n − k by
Lemma 11. �

In order to determine the pseudocodeword redundancies of more kinds of
k-dimensional codes, it is convenient to introduce the following notations. Let
p1, . . . , pk be the points of a basis of PG(k− 1, 2). Then, any p ∈ PG(k− 1, 2)

may be written as p =
∑k
i=1 cipi, where ci ∈ GF(2) for 1 ≤ i ≤ k. Call the set

of the basis points pi whose coefficients are nonzero the representing-set of the
point p with respect to the basis points p1, . . . , pk. If the basis points are fixed,
one may simply call this set representing-set of the point p.

In the following text of this section, for basis points p1, . . . , pk of PG(k−1, 2),
let S1, . . . , St stand for the representing-sets of pk+1, . . . , pk+t, respectively.

Definition 13. The points pk+1, . . . , pk+t are called representing-independent
if their representing-sets S1, . . . , St are pairwise disjoint. They are called repre-
senting-dependent if for all 1 ≤ i ≤ t there exists 1 ≤ j ≤ t, j 6= i such that
Si ∩ Sj 6= ∅.

For the points that are representing-independent, we have:

Theorem 14. For any k + t points pi ∈ PG(k − 1, 2), 1 ≤ i ≤ k + t, such
that the points p1, . . . , pk are basis points and the points pk+1, . . . , pk+t are
representing-independent, if the value assignment m(·) satisfies

m(p) =

{
zi ≥ 1 if p = pi, 1 ≤ i ≤ k + t,

0 otherwise,
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then the [n, k] code C determined by m(·) satisfies ρ(C) =
∑k+t
i=1 zi − k = n− k

for all the four pseudoweights.

Proof. We arrange a generator matrix G of C in such a way that the first
m(p1) columns of G are the point p1 and the last m(pk+t) columns are the
point pk+t. Furthermore, up to code equivalence, we may assume that the
representing-set of pk+j is Sj = {psj−1+1, psj−1+2, . . . , psj}, 1 ≤ j ≤ t, where
0 = s0 < s1 < s2 < · · · < st ≤ k. Construct a matrix H as

(4.1) H =


H ′

h1
...
ht

 ,

where

H ′ =



H1

. . .

Hk

Hk+1

. . .

Hk+t


is a block diagonal submatrix, and Hi for 1 ≤ i ≤ k + t is defined as in
(3.1), and hi for 1 ≤ i ≤ t is a binary row vector, and we demand that the
coordinate position of hj , 1 ≤ j ≤ t, corresponding to the first column of Hi

for sj−1 + 1 ≤ i ≤ sj and to the first column of Hk+j be equal to one. Then, it
can be checked that HGT = 0 and rank(H) = n− k, thus, H is a parity-check
matrix of C.

Consider the Tanner graph of the code C with respect to the parity-check
matrix H. It is easy to see that this Tanner graph is a disjoint union of
trees, i.e., it does not have any cycles. From [10, Lem. 28] it follows that the
fundamental polytope equals the code polytope. Therefore, there do not exist
any proper pseudocodewords. Hence, it holds that ρ(C) = n−k for all the four
pseudoweights. �

For the representing-dependent case, it is more complicated to determine
the pseudocodeword redundancy, as the codes will have in general no cycle-free
Tanner graph representation. However, we may get some results about some
particular codes.

Assume that p1, . . . , pk are basis points of PG(k − 1, 2) and that pk+1, . . . ,
pk+t are representing-dependent. Denote by U1 the basis points which belong
to one and only one representing-set and denote by U2 the basis points which
belong to at least two representing-sets, so that U2 = (

⋃t
i=1 Si) \ U1. Define

U3 = U1 ∪ {pk+1, pk+2, . . . , pk+t}.
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Theorem 15. Let the notations be defined as above and assume one of the
following conditions holds:

(1) Si ∩U1 6= ∅ for each 1 ≤ i ≤ t, and min{m(p) | p ∈ U2} ≥ max{m(p) |
p ∈ U3},

(2) W1 = {j | Sj ∩ U1 6= ∅} 6= ∅ and W2 = {j | Sj ∩ U1 = ∅} 6= ∅ and
min{m(p) | p ∈ U2} ≥ max{m(p) | p ∈ U3} and min{m(pk+j) | j ∈
W1} ≤ min{m(pk+j) | j ∈W2},

(3) |
⋂t
i=1 Si| ≥ 2 and max{m(p) | p ∈

⋂t
i=1 Si} ≤ min{m(p) | p ∈

((
⋃t
i=1 Si) \ (

⋂t
i=1 Si)) ∪ {pk+1, . . . , pk+t}}.

Then, the [n, k] code C determined by

m(p) =

{
zi ≥ 1 if p = pi, 1 ≤ i ≤ k + t,

0 otherwise,

satisfies ρ(C) = n− k for all the four pseudoweights.

Proof. The proof is similar for the three cases. We only give the proof for
the first case. Arrange a generator matrix G of C as before, namely, put the
points pi for 1 ≤ i ≤ k + t in order in the columns of G, and each point pi,
1 ≤ i ≤ k + t, repeats m(pi) times.

Construct a matrix H as in (4.1), and the binary vector hj in H, 1 ≤
j ≤ t, is determined by the representing-set Sj of the point pk+j . If Sj =
{pi1 , pi2 , . . . , piθ}, then hj has a one in each coordinate position corresponding
to the first column of Hk+j and to the first column of Hil , 1 ≤ ` ≤ θ. Then it

can be checked that HGT = 0 and rank(H) =
∑k+t
i=1 m(pi)− k = n− k. Thus,

H is a parity-check matrix of C.
For 1 ≤ i ≤ t, let Ti = Si ∪ {pk+i}, and let V = {p1, . . . , pk} \ (

⋃t
i=1 Si).

Define

γi = min{m(pj1) +m(pj2) | pj1 , pj2 ∈ Ti \ U2, j1 6= j2},
γ = min

1≤i≤t
{γi},

δ = min{m(p) | p ∈ V }.
Different from the representing-independent case, the analysis of the code-

words with minimum (Hamming) weight is tedious in the representing-depend-
ent case. In general, according to the construction of the parity-check ma-
trix H, one may divide the possible codewords with minimum weight into
two classes: one class is the codewords with nonzero coordinate in the po-
sition corresponding to some point in U2, and the other class is the ones
with zero coordinate in the position corresponding to any point in U2 (note
that U2 = ∅ in the representing-independent case). The confined condition
min{m(p) | p ∈ U2} ≥ max{m(p) | p ∈ U3} plays a key role in determining the
codewords with minimum weight.

More concretely, since min{m(p) | p ∈ U2} ≥ max{m(p) | p ∈ U3}, it follows
that d(C) = min{γ, δ} by analyzing the constructed parity-check matrixH, that
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is, the codewords with minimum weight should be ones with zero coordinates
in the positions corresponding to any point in U2.

On the other hand, for x ∈ K(H) and p ∈ Ti, 1 ≤ i ≤ t, we have

xp ≤
∑

p′∈Ti\{p}
xp′ for all p ∈ Ti,

and thus by the assumption min{m(p) | p ∈ U2} ≥ max{m(p) | p ∈ U3}, we
get

m(p′′)xp ≤ m(p′′)
( ∑
p′∈Ti\{p}

xp′
)

(for some p′′ ∈ Ti \ U2)

≤
∑

p′∈Ti\{p}
m(p′)xp′ .

Thus,

(m(p′′) +m(p))xp ≤
∑
p′∈Ti

m(p′)xp′ ,

that is,

(4.2) m(p′′) +m(p) ≤
∑
p′∈Ti m(p′)xp′

xp
.

Since min{m(p) | p ∈ U2} ≥ max{m(p) | p ∈ U3}, γi ≤ m(p′′) +m(p) always
holds no matter p ∈ (Ti \ U2) or p ∈ (Ti ∩ U2), 1 ≤ i ≤ t. Thus, (4.2) can be
rewritten as

(4.3) γi ≤ m(p′′) +m(p) ≤
∑
p′∈Ti m(p′)xp′

xp
.

Therefore,

wmaxfrac(x) =

∑n
j=1 xj

maxj{xj}

=

∑
pm(p)xp

max{xp}
, p ∈

t⋃
i=1

Ti ∪ V

≥

{
γi if max{xp} = xp0 and p0 ∈ Ti, 1 ≤ i ≤ t (by (4.3)),

δ if max{xp} = xp0 and p0 ∈ V.

Thus, wmin(H) ≥ d(C) = min{γ, δ} for the max-fractional pseudoweight. From
(2.2), we have ρ(C) ≤ n− k for all the four pseudoweights. Since ρ(C) ≥ n− k
by definition, we have ρ(C) = n− k for all the four pseudoweights. �
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Example 16. Let k = 6 and t = 3; consider the linear code C generated by
the matrix

G =


1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 1 1

 .

Denote the i-th column of the matrix G by pi, 1 ≤ i ≤ 9. Then, pi for
1 ≤ i ≤ 6 are basis points of PG(5, 2), and the points p7, p8, and p9 have
representing-sets S1 = {p1, p4, p5}, S2 = {p2, p5, p6}, and S3 = {p3, p4, p6},
respectively. One sees that U1 = {p1, p2, p3}, U2 = (S1 ∪ S2 ∪ S3) \ U1 =
{p4, p5, p6}, and U3 = U1 ∪ {p7, p8, p9} = {p1, p2, p3, p7, p8, p9}. Furthermore,
S1 ∩ S2 ∩ S3 = ∅ and Si ∩ U1 6= ∅ for each 1 ≤ i ≤ 3 and m(pi) = 1 for
1 ≤ i ≤ 9. Thus, the points pi, 1 ≤ i ≤ 9, exactly satisfy the conditions of Case
1) in Theorem 15, and therefore, ρ(C) = n− k = 9− 6 = 3.

We remark that the code C is not cycle-free, i.e., the Tanner graph of any
parity-check matrix of C has a cycle, as we will now demonstrate. According
to the proof of Theorem 15, one may take a parity-check matrix H of C as

H =

 1 0 0 1 1 0 1 0 0
0 1 0 0 1 1 0 1 0
0 0 1 1 0 1 0 0 1

 .

Obviously, the three rows of this H are linearly independent and H has a cycle
located at the 3-th, 4-th, and 5-th coordinates.

Due to the fact that any parity-check matrix with 3 rows may be written as
PH, where P is a 3× 3 invertible matrix, it suffices to check that any matrix
PH has a cycle for any invertible 3×3 matrix P . In fact, one may list all binary
invertible 3× 3 matrices P , and then check that PH has a cycle for each such
P . A simpler argument is to make use of the form of the matrix H. Observe
that H may be written as (I,M, I), where I is the 3× 3 identity matrix, and

M =

 1 1 0
0 1 1
1 0 1

 .

Thus, PH = (P, PM,P ). Since P is a binary 3 × 3 invertible matrix, the
number of ones in P , denoted by N (P ), should satisfy N (P ) ≥ 3. If N (P ) ≥ 4,
then there exists a column in P such that the number of ones in the column is
at least two. Since such a column will occur both in the first block P and in the
last block P in the matrix PH = (P, PM,P ), the cycle can be found in these
two same columns. The remaining case is N (P ) = 3, and in this case, the block
PM in PH = (P, PM,P ) is just the permutations of the rows of M , thus, the
block PM contains a cycle since M contains a cycle. These arguments show
that C is not cycle-free.
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Example 17. Let k = 4 and t = 3; consider the code C generated by the
matrix

G =


1 0 0 0 1 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

 .

It can be checked that the first four columns of G, p1, . . . , p4, are basis points
in PG(3, 2), and the last three columns, p5, p6, and p7, have representing-
sets S1 = {p1, p2, p4}, S2 = {p3, p4}, and S3 = {p2, p3}, respectively. In
addition, U1 = {p1}, U2 = {p2, p3, p4}, and U3 = {p1, p5, p6, p7}. Furthermore,
S1 ∩ S2 ∩ S3 = ∅, S1 ∩ U1 = {p1}, S2 ∩ U1 = S3 ∩ U1 = ∅, and m(pi) = 1
for 1 ≤ i ≤ 7. Thus, the points pi, 1 ≤ i ≤ 7, exactly satisfy the conditions of
Case 2) in Theorem 15, and therefore ρ(C) = n− k = 7− 4 = 3.

Similarly to Example 16, one may show that C is not cycle-free by taking a
parity-check matrix H of C as

H =

 1 1 0 1 1 0 0
0 0 1 1 0 1 0
0 1 1 0 0 0 1

 .

Example 18. Let k = 4 and t = 3; consider the code C generated by the
matrix

G =


1 0 0 0 1 1 1
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

 .

Then, the first four columns of G, p1, . . . , p4, are the basis points of PG(3, 2),
and the last three columns of G, p5, p6, and p7, have representing-sets S1 =
{p1, p2, p4}, S2 = {p1, p2, p3, p4}, and S3 = {p1, p2, p3}, respectively. In addi-
tion, U1 = ∅, U2 = {p1, p2, p3, p4}, U3 = {p5, p6, p7}, S1 ∩ S2 ∩ S3 = {p1, p2},
and m(pi) = 1 for 1 ≤ i ≤ 7. Thus, the points pi for 1 ≤ i ≤ 7 exactly satisfy
the conditions of Case 3) in Theorem 15, so that ρ(C) = n− k = 7− 4 = 3.

Similarly to the above two examples, one may show that C is not cycle-free
by taking a parity-check matrix H of C as

H =

 1 1 0 1 1 0 0
1 1 1 1 0 1 0
1 1 1 0 0 0 1

 .

Remark 19. Along the line of Theorem 15, we may use the value assignment to
get other kinds of codes whose pseudoredundancies can be determined, however,
the conditions will be too tedious to get more information. So, we omit them.

Summing up Theorems 14 and 15 and using similar arguments as in these
two theorems, we get in general the following (the detailed proof is omitted):

Theorem 20. Assume that the points pk+i, 1 ≤ i ≤ t, can be divided into `
subsets such that:



NEW RESULTS ON THE PSEUDOREDUNDANCY 129

(1) the representing-sets of points from different classes do not intersect;
(2) each of these ` classes is either an representing-independent one or an

representing-dependent one satisfying the conditions of Theorem 15.

Then, the [n, k] code C determined by

m(p) =

{
zi ≥ 1 if p = pi, 1 ≤ i ≤ k + t,

0 otherwise,

satisfies ρ(C) = n− k for all the four pseudoweights.

5. Conclusion

Making use of the value assignment, we derived upper bounds on the pseu-
doredundancies for certain binary codes with repeated and added coordinates
and for certain shortened subcodes. Also, we constructed several kinds of
k-dimensional binary linear codes by using the value assignment; the pseudore-
dundancies for all of the four pseudoweights of these binary linear codes are
fully determined.
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