
Bull. Korean Math. Soc. 56 (2019), No. 1, pp. 73–82

https://doi.org/10.4134/BKMS.b180095

pISSN: 1015-8634 / eISSN: 2234-3016

EXTREMAL CONFIGURATIONS OF THREE OR FOUR

SYMMETRIES ON A RIEMANN SURFACE

Ewa Koz lowska-Walania

Abstract. We consider Riemann surfaces with three or four symmetries,

assuming that they have a maximal total number of ovals and find all the
possible topological types of the symmetries realizing such a configura-

tion.

1. Introduction

A Riemann surface X = H/Γ of genus g ≥ 2, where Γ is a Fuchsian surface
group, will be called symmetric if it admits an antiholomorphic involution τ ∈
G = Aut±(X), called a symmetry of X. Now the set of points fixed by τ
consists of at most g + 1 disjoint simple closed curves called ovals. If the set
X \ Fix(τ) is disconnected, then we call τ to be separating and we call it non-
separating in the other case. Moreover, we define a topological type of τ to be a
symbol ±k, where k ≥ 0 denotes the number of ovals of τ , and the sign depends
on the separability of τ : + for separating, − for non-separating symmetry.

It is known that three symmetries on a Riemann surface of genus g have
at most 2g + 4 ovals in total and if the bound is attained, then g is odd and
the three symmetries commute. Similarly, for four symmetries the bound is
2g + 8 and the group generated by the symmetries is Dn × Z2

2 (see Natanzon
[7], Bujalance-Costa [1]). Furthermore, for even values of g the bound for
three symmetries is 2g + 3 and it is sharp for arbitrary even g also only with
commuting symmetries. For four symmetries the bound is 2g+2 in such a case
and the group is Dn × Z2 (Gromadzki-Izquierdo [5]). Our aim in this paper
is to find all the possible topological types for three or four symmetries that
realize the bound on the maximal total number of ovals. Not surprisingly, in
the commuting case there are numerous possible configurations, while in the
other case the maximal total number of ovals is realized in a single possible
way.
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2. Preliminaries

The main tool in our paper is the theory of non-Euclidean crystallographic
groups (NEC groups in short), which are just the discrete and cocompact sub-
groups of the group G of all the isometries of the hyperbolic plane H. The
algebraic structure of such a group Λ is determined by the so-called signature:

(1) s(Λ) = (h;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk), (−)l}),

where the brackets (ni1, . . . , nisi) are called the period cycles, the integers nij
are the link periods, mi are the proper periods and finally h is the orbit genus
of Λ. We shall also denote s = s1 + · · · + sk. The algebraic presentation for
the group Λ with signature (1) is as follows, where generators used are called
canonical:

x1, . . . , xr, ei, cij , 1 ≤ i ≤ k + l, 0 ≤ j ≤ si
and a1, b1, . . . , ah, bh if the sign is + or d1, . . . , dh otherwise. Moreover, we
have relators: xmi

i , i = 1, . . . , r, c2ij , (cij−1cij)
nij , ci0e

−1
i cisiei, i = 1, . . . , k + l,

j = 0, . . . , si and

x1 · · ·xre1 · · · ek+la1b1a
−1
1 b−1

1 · · · ahbha
−1
h b−1

h or x1 · · ·xre1 · · · ek+ld
2
1 · · · d2

h,

according to whether the sign is + or −. Every element of finite order in
Λ is conjugate either to a canonical reflection or to a power of some canonical
elliptic element xi or else to a power of the product of two consecutive canonical
reflections. An abstract group with such a presentation can be realized as an
NEC group Λ if and only if the value

2π

εh+ k + l − 2 +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

) ,

where ε = 2 or 1 according to the sign being + or −, is positive. The value
above is just the hyperbolic area µ(Λ) of any fundamental region for the group
Λ and the Hurwitz-Riemann formula holds:

[Λ : Λ′] = µ(Λ′)/µ(Λ),

where Λ′ is a subgroup of finite index in an NEC group Λ.
Particularly important in this theme are the torsion free Fuchsian groups.

Recall that such a group Γ is called a surface group and it has signature (g;−).
In such a case H/Γ is a compact Riemann surface of genus g ≥ 2 and con-
versely, any compact Riemann surface of genus g ≥ 2 can be represented as
such an orbit space for some Fuchsian surface group Γ of genus g. Further-
more, given a Riemann surface so represented, a finite group G is a group of
automorphisms of X if and only if G = Λ/Γ for some NEC group Λ containing
Γ as a normal subgroup. Let C(G, g) denote the centralizer of an element g in
G. The following result from [3] is crucial for the paper.
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Theorem 2.1. Let X = H/Γ be a Riemann surface with a group G of all
automorphisms of X, let G = Λ/Γ for some NEC group Λ and let θ : Λ → G
be the canonical epimorphism. Then the number of ovals of a symmetry τ of
X equals ∑

[C(G, θ(ci)) : θ(C(Λ, ci))],

the sum is taken over a set of representatives of all conjugacy classes of canon-
ical reflections whose images under θ are conjugate to τ .

Now to determine the number of ovals we also need to know the order of
the centralizer of a reflection in an NEC group. This can be done with the
following result of Singerman from [8].

Theorem 2.2. Let c0, c1, . . . , cs, e be the system of canonical reflections corre-
sponding to a period cycle (n1, . . . , ns) of an NEC group Λ with signature (1).
If all ni are even, then the centralizer C(Λ, ci) equals

〈ci〉 ×
(
〈(ci−1ci)

ni/2〉 ∗ 〈(cici+1)ni+1/2〉
)

= Z2 × (Z2 ∗ Z2) for i 6= 0,
〈c0〉 ×

(
〈(c0c1)n1/2〉 ∗ 〈e−1(cs−1cs)

ns/2e〉
)

= Z2 × (Z2 ∗ Z2) for i = 0,
〈c0〉 × 〈e〉 = Z2 × Z for s = 0.

With the two above results we are in position to compute the number of ovals
of a symmetry. To complete our task with the topological type, we shall need
the following result, which can be found in [2], and will allow us to determine
the separability character of the symmetries in question. Let Λ′ be a normal
subgroup of an NEC group Λ. A canonical generator of Λ is proper (with
respect to Λ′) if it does not belong to Λ′. The elements of Λ expressible as a
composition of proper generators of Λ are the words of Λ (with respect to Λ′).
We have:

Lemma 2.3 (c.f. Theorem 2.1.3). Suppose that [Λ : Λ′] is even and Λ has sign
+. Then Λ′ has sign + if and only if no orientation reversing word belongs to
Λ′. If [Λ : Λ′] is even and Λ has the sign −, then Λ′ has the sign − if and only
if either a glide reflection of the canonical generators of Λ or an orientation
reversing word belongs to Λ′.

The above result can be used to determine separability for these symmetries,
which are central in the automorphism group. For the non-central symmetries
one can use the Schreier coset graph method described for example in [6].

3. Possible topological types of the symmetries

The starting points for this section are the results concerning the maximal
total number of ovals of three or four symmetries and the group structure for
surfaces realizing that bound:

Theorem 3.1 (Natanzon [7]). The maximal total number of ovals of symme-
tries of a Riemann surface of genus g is 2g+ 4 for three symmetries and 2g+ 8
for four symmetries.
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Theorem 3.2 (Bujalance, Costa [1]). If three symmetries on a Riemann sur-
face of genus g have 2g + 4 ovals in total, then they commute. However, if
four symmetries on a Riemann surface of genus g have 2g+ 8 ovals, then they
generate the group Dn × Z2

2.

Theorem 3.3 (Gromadzki, Izquierdo [5]). Three non-conjugate symmetries of
a Riemann surface of even genus g have at most 2g + 3 ovals in total and this
bound is attained for arbitrary even g and only for commuting symmetries. In
the case of four symmetries the bound is 2g+ 2 and it is attained for arbitrary
even g with the group of automorphisms being of the form Dn × Z2.

Let us begin with the case of three symmetries. As our symmetries com-
mute, we actually have four anticonformal involutions x, y, z, xyz where G =
〈x, y, z〉 = Z3

2. As we shall see, one of these, say xyz will be fixed-point free,
while all the others will be separating. First we shall find the only possible
signature of an NEC group Λ, see also [5].

To begin with, let us assume that X = H/Γ is a Riemann surface of genus
g ≥ 2 admitting three symmetries x, y, z with the maximal total number of
ovals. Now G = Λ/Γ for some NEC group Λ with signature

(2) (h;±; [2, m. . ., 2]; {(2, s1. . ., 2), k. . ., (2, sk. . ., 2), (−)l}),

where s = s1 + · · · + sk. Observe that all the proper and link periods must
be equal 2 as the group G only has nontrivial elements of order 2. Now let
θ : Λ→ G be the canonical epimorphism and let t denote the total number of
ovals of symmetries x, y, z. We know that t = 2g + 3 for g even and t = 2g + 4
for g odd. Now by Theorems 2.1 and 2.2 a reflection c in a non-empty period
cycle contributes to θ(c) with 2 ovals if its neighbors have the same image
under θ and with 1 oval otherwise. Similarly, a reflection c in an empty period
cycle contributes with 4 ovals if θ(e) = 1 for the corresponding generator e
and with 2 ovals otherwise. Summing up, 2g + 3 ≤ t ≤ 2s + 4l and by the
Hurwitz-Riemann formula

g − 1

4
= εh+ k + l − 2 +

m

2
+
s

4
≥ εh+ k +

l

2
+
m

2
− 2 +

t

8

which in turn gives 2g + 3 ≤ t ≤ 2g + 14 − 8εh − 8k − 4l − 4m and 8εh +
8k + 4l + 4m ≤ 11, which is only possible if k = 1, h = m = l = 0. Indeed,
k ≥ 1 forces all the other parameters to be equal 0. Now if k = 0, then there
are only empty period cycles and so the total number of ovals is even, which is
impossible for the case g even. If g is odd and k = 0, then we have t ≤ 4l and

g − 1

4
= l − 2 +

m

2
≥ t

4
− 2 +

m

2

and in turn 3 − 2m ≥ g as t = 2g + 4. This is only possible for g = 3 and
m = 0. But then g−1

4 = 1
2 and so the normalized hyperbolic area of Λ is not an

integer, hence m 6= 0, a contradiction. Therefore we are left with a signature
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for Λ being of the form

(3) (0; +; [−]; {(2, g+3. . . , 2)}).
Here we are in position to discuss the separability character of the sym-

metries x, y, z. By Lemma 2.3 we see, that there are no orientation reversing
words for any of the symmetries. Indeed, the sign of Λ is +, there are no proper
periods and no other canonical generators mapped nontrivially to orientation
preserving elements of G. Hence the only non-separating symmetry is xyz,
while the others are separating. Let us also note that this means that for g
even, the numbers of ovals are odd and for g odd, the numbers of ovals are
even.

Now, to give the possible topological types, we have to see how many of the
reflections have neighbors with distinct images under θ. This can be done in
several ways (see for example [5]). As we already know the maximal number
of ovals, we can use this fact to simplify the proof. Observe, that the only
non-empty period cycle allows at most 2(g + 3) ovals. Now for the odd genus,
we have 2g + 4 ovals, hence two of the reflections must contribute with 1 oval.
Moreover, these two contribute to the same symmetry, as the numbers of ovals
are even. For the case of g being even, we have 2g + 3 ovals, hence there are
three reflections which contribute with only 1 oval to the respective symmetry.
Also, these must contribute to three different symmetries as the numbers of
ovals are all odd. Now we are ready to specify the epimorphism θ and find the
topological types of the symmetries.

Let first g be odd. As exactly two of the reflections contribute with 1 oval
and they contribute to the same symmetry - say x, our epimorphism θ must
map the canonical reflections respectively to

x, y, . . . , x, y︸ ︷︷ ︸
2α

, x, z, . . . , x, z︸ ︷︷ ︸
2β

,

where 2α + 2β = g + 3. Symmetries y and z always appear with the same
neighbors. Observe here that x must have 2α+ 2β − 2 = g + 1 ovals, y has 2α
ovals and z has 2β ovals.

Now if g is even, then we have 3 commuting symmetries with 2g + 3 ovals
in total and the epimorphism is of the form:

x, y, x, . . . , y, x︸ ︷︷ ︸
2α

, y, z, y, . . . , z, y︸ ︷︷ ︸
2β

, z, x, z, . . . , x, z︸ ︷︷ ︸
2γ

,

where 2α+2β+2γ = g. Here x has 2α+2γ+1 ovals, y has 2α+2β+1 ovals, z
has 2β+ 2γ+ 1 ovals. Summing up, we found all the triples of symmetry types
that realize the bound on the total number of ovals, hence we have proved the
following theorem.

Theorem 3.4. If a Riemann surface of genus g admits three non-conjugate
symmetries with a maximal total number of ovals, then the symmetries com-
mute and their topological types are:
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1. for odd g: +(g+ 1),+2α,+2β with 2α+ 2β = g+ 3, where α, β > 0 are
integers;

2. for even g: +(2α+ 2β + 1),+(2α+ 2γ + 1),+(2β + 2γ + 1) with 2α+
2β + 2γ = g, where α, β, γ ≥ 0 are integers.

Conversely, for all such sets of integers α, β, γ, g as above we constructed a
Riemann surface having three commuting symmetries with specified types and
the maximal configuration of ovals.

Now we shall consider the case of four symmetries. Let first g be even. In
such a case, by the results of Gromadzki and Izquierdo [5] we know that the
maximal total number of ovals is 2g + 2 and when attained, the symmetries
generate the group G = Dn×Z2. Let us assume first that the four symmetries
have 2g + 2 ovals in total and two of them do not commute, that is n > 2.
As usual, we have an NEC group Λ with signature (1) and an epimorphism
θ : Λ → G. Observe, that by Theorems 2.1 and 2.2 a reflection corresponding
to the non-empty period cycle can give at most n ovals if its image is a central
symmetry or at most 2 ovals otherwise. Similarly, a reflection corresponding
to the empty period cycle gives at most 2n ovals - for a central image - or 4
ovals otherwise. Now we shall find the only possible NEC signature for Λ and
the only possible epimorphism θ. For, observe first that as g is even, then by
the Hurwitz-Riemann formula there is an odd number of link periods equal to
n in the signature of Λ. Hence k 6= 0. Now if h+ r + l > 0, then

g − 1

2n
≥ −1 +

1

2
+

2l + s− 1

4
+

1

2
− 1

2n

and in turn 2l + s ≤ 2g
n + 1. Now the total number of ovals t holds t ≤

(2l+s−2)n+4 ≤ 2g−n+4 < 2g+2, therefore h = r = 0 and there is only one,
non-empty, period cycle in the signature of Λ. Now we may treat our reflections
and its images, being the symmetries, as situated on a circle and by Lemma 3.3
in [4], at least three of the reflections have images with distinct neighbors under
θ. Observe that at least two of the ones with distinct neighbors must be central.
Indeed, it is impossible that all the central symmetries appearing in the cycle
have the same neighbors. In such a case either all the symmetries of the cycle
would be central or at least 4 of the symmetries in the cycle are non-central
with at least three having distinct neighbors and hence t ≤ (s−4)n+2+3 ·1 ≤
2g − n+ 5 < 2g + 2 as s ≤ 2g

n + 3 by the Hurwitz-Riemann formula.
Now if only one of the central symmetries has distinct neighbors, then for the

epimorphism to exist these neighbors must be non-central (otherwise as above
we have only central symmetries in the cycle and we get a contradiction). But
then again the non-central symmetries appear at least 4 times, at least two
times with distinct neighbors, and so t ≤ (s− 5)n+ n

2 + 6 ≤ 2g− 2n+ n
2 + 6 <

2g + 2.
Therefore indeed at least two of the central symmetries have distinct neigh-

bors. Now if there would be at least three non-central symmetries, then
t ≤ (s− 5)n+ 2 · n2 + 5 ≤ 2g − 2n+ n+ 5 < 2g + 2.
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Hence each of the non-central symmetries appears only once, every time
with distinct neighbors as they must be consecutive - recall that there is a link
period equal n. Now if at least three of the central symmetries have distinct
neighbors, then t ≤ (s− 5)n+ 3n/2 + 2 ≤ 2g − 2n+ 3n/2 + 2 < 2g + 2.

Summing up, for G = Dn × Z2 = 〈a, b | a2, b2, (ab)n〉 × 〈x|x2〉, the epimor-
phism θ maps, without loss of generality, the consecutive canonical reflections
to

a, b, x, x(ab)n/2, x, x(ab)n/2, . . . , x or x(ab)n/2.

In both cases it is easy to see that a and b have 1 oval each, while x and x(ab)n/2

have g ovals each. Clearly x, x(ab)n/2 are non-separating. Also, by considering
the Schreier coset graph, like in [6], it is easy to see that a, b are separating.

Let now g be even and the symmetries x, y, z, xyz commute, we have G =
Z3

2 = 〈x, y, z〉 here. Assume that these symmetries have the maximal number of
2g+2 ovals in total. Now again we shall find the only NEC signature for Λ and
the epimorphism θ. Observe first, that by Theorems 2.1 and 2.2, a symmetry
corresponding to an non-empty period cycle gives 2 ovals if it has the same
neighbors and 1 oval if it has distinct neighbors. A symmetry corresponding
to the empty period cycle gives 4 or 2 ovals accordingly. Therefore the total
number of ovals holds t ≤ 4l + 2s for Λ having the signature (1), and observe
again that k > 0, as there is an odd number of link periods in the signature.
Now if l > 0, k ≥ 2, then

g − 1

4
≥ −1 + 1 +

1

2
+

2l + s

4
and in turn t ≤ 2g − 6, a contradiction. Also, if l ≥ 2, k = 1, then similarly
t ≤ 2g − 2, a contradiction again. Now if l = k = 1, then by Lemma 3.3 in
[4], at least two of the symmetries in the non-empty period cycle have distinct
neighbors and so t ≤ 4 + 2s− 2 and by the Hurwitz-Riemann formula

g − 1

4
≥ −1 +

1

2
+

2 + s

4

and so t ≤ 2g, a contradiction. Hence again Λ has signature (3). As there
are exactly 2g + 2 ovals, it follows that exactly four of the symmetries in the
cycle have neighbors with distinct labels. To find the only possible type of
epimorphism, we shall analyze the spots corresponding to the symmetries with
distinct neighbors in our cycle. Observe first that it is impossible that all
the spots with distinct neighbors belong to one symmetry, say x. Indeed,
between two such spots we always have an odd number of symmetries, which
leads to an even length of the period cycle, a contradiction as s = g + 3.
Similarly, if each of the spots belongs to a different symmetry, then the numbers
of symmetries are always even leading to the same result. Now if three of
these spots belong to one symmetry, say x then, as we treat the symmetries
as situated on a circle, we have a situation where between two appearances
of x with distinct neighbors there is exactly one spot with distinct neighbors
belonging to another symmetry. This clearly is impossible. Therefore we are



80 E. KOZ LOWSKA-WALANIA

left with a situation where exactly two of the spots with distinct neighbors
contribute to one symmetry, say x. It cannot be that these two spots are
separated by another one belonging to a symmetry different than x, so without
loss of generality we are left with the epimorphism of the type:

x, y, x, . . . , y,︸ ︷︷ ︸
2α

x, z, x, . . . , z,︸ ︷︷ ︸
2β

xyz, z, . . . , z,︸ ︷︷ ︸
2γ

xyz, x, xyz, . . . , x,︸ ︷︷ ︸
2δ

xyz.

We easily compute the numbers of ovals by Theorems 2.1 and 2.2 and obtain
that x has 2α + 2β + 2δ − 2 ovals, y has 2α ovals, z has 2β + 2γ − 1 ovals
and xyz has 2γ + 2δ + 1 ovals. By Lemma 2.3, all the symmetries are non-
separating as for each one we can easily find the orientation reversing word in
the corresponding NEC subgroup of Λ.

Let us now assume that g is odd. Recall that the maximal total number of
ovals for four symmetries is 2g+8 and it is attained with the group generated by
the symmetries being G = Dn×Z2

2. Again, we shall find the only epimorphism
that realizes the bound on the total number of ovals. As usual, we begin with
an NEC group Λ with signature (1) and an epimorphism θ : Λ → G. Now
by Theorems 2.1 and 2.2, a central symmetry corresponding to the non-empty
period cycle contributes at most 2n ovals if it has the same neighbors, n ovals if
it has distinct neighbors; in addition, a central symmetry contributes at most 4n
ovals if it corresponds to an empty period cycle. For a non-central symmetry the
respective values are 4, 2 and 8 ovals. Therefore, as the non-central symmetries
appear at least twice, the total number of ovals holds t ≤ n(4l+ 2s)−4. Now if
k = 0 in the signature of Λ, then by the Hurwitz-Riemann formula g−1

4n ≥ −2+l
and so t ≤ 4n(l− 2) + 2 · 8 ≤ g+ 15 and g+ 15 ≥ 2g+ 8 for 7 ≥ g only. On the
other hand, there must be at least four period cycles, hence g ≥ 8n + 1 ≥ 17,
which gives a contradiction.

If k > 0, l ≥ 2, then g−1
4n ≥

2l+s
4 and so t ≤ 2g − 2 − 4, a contradiction.

If k > 0, l = 1, then there are two possible cases. If the empty period cycle
contributes to a central symmetry, then there are at least two non-central
symmetries in the non-empty period cycles and so t < (s−2)2n+8+4n = 2g+8,
a contradiction. Similarly, if the empty period cycle contributes to a non-central
symmetry, then t ≤ (s − 1)2n + 2 + 4 ≤ 2g − 2 − 2n + 6, a contradiction. If
l = 0, k ≥ 2 or k = 1, h + r > 0, then by the Hurwitz-Riemann formula
g−1
4n ≥ −

1
2 + s

4 and in turn t ≤ (s− 2)2n+ 2 · 4 ≤ 2g + 6, a contradiction.
Hence the signature of an NEC group Λ has genus 0, has no proper periods

and has only one, non-empty, period cycle of length s. Let us assume first that
the symmetries commute and denote them by x, y, z, w. As t = 2g + 8 and
s = g−1

2 + 4 by the Hurwitz-Riemann formula, it follows easily that exactly
three of the symmetries in the cycle have distinct neighbors. It is not hard to
see that, without loss of generality, the only possible epimorphism is:

x, y, . . . , y︸ ︷︷ ︸
2α

, x, z, x, . . . , z︸ ︷︷ ︸
2β

, x, w, x, . . . , x, w︸ ︷︷ ︸
2γ

.
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By Theorems 2.1 and 2.2 it follows easily that x has 4α+ 4β + 4γ − 6 = g + 1
ovals, y has 4α, z has 4β and w has 4γ ovals where s = 2α+2β+2γ = g−1

2 +4.
By Lemma 2.3, all the symmetries are separating.

Let us now move to the case of non-commuting symmetries. For, let a, b
be the generating symmetries of Dn and x, y be the generators of Z2’s in the
presentation of G as the direct product. Observe first, that as we have only
one period cycle and at least two non-central symmetries, then at least two
times central symmetries appear with distinct neighbors. The explanation
for this fact is similar as the one in case of g being even. Now if non-central
symmetries appear at least 4 times in the cycle, then t ≤ (s−6)2n+2 ·n+14 ≤
2g − 2− 2n+ 14 < 2g + 8 as n > 2 and s ≤ g−1

n + 4, a contradiction.
Assume now that non-central symmetries appear three times in the cy-

cle. If at least four of the symmetries have distinct neighbors, then t ≤
(s − 5)2n + 2n + 8 ≤ 2g − 2 + 8, a contradiction. Hence exactly three of
the symmetries have distinct neighbors and two of them are central. Observe
that no two non-central symmetries are consecutive, as only one of them may
have distinct neighbors and we would obtain more than 3 consecutive non-
central symmetries, a contradiction. Now if no two non-central symmetries are
consecutive, then at least three of their central neighbors must have distinct
neighbors, a contradiction.

Therefore we are left with the case where there are only two non-central
symmetries in the cycle, we may assume these to be a, b. If at least four of the
central symmetries have distinct neighbors, then t ≤ (s−6)2n+4n+8 ≤ 2g+6,
a contradiction. If the non-central symmetries are consecutive, then by the
Hurwitz-Riemann formula g−1

4n = −1 + s−1
4 + 1

2 −
1

2n and so s = g−1
n + 2

n + 3
and t ≤ (s−4)2n+2n+4 = 2g−2+4+6n−8n+2n+4 = 2g+6, a contradiction.
Therefore non-central symmetries are not consecutive. As no more than three
central symmetries have distinct neighbors, then the non-central symmetries
share common neighbor, say x. Observe, that this appearance of x contributes
only 8n/4n = 2 ovals to the symmetry x. Now if any of the non-central
symmetries has distinct neighbors, then t ≤ (s− 5)2n+ 2n+ 2 + 6 = 2g + 6, a
contradiction. Finally, we are left with the epimorphism of the form

a, x, b, x, y, x, . . . , y︸ ︷︷ ︸
2α

, x.

We can easily count that a and b have 4 ovals each, y has 2αn ovals and x has
2αn+ 2 ovals, where by the Hurwitz-Riemann formula 2α = g−1

n . By Lemma
2.3 and the results of [6] all the symmetries are separating.

Theorem 3.5. If a Riemann surface Xg admits four non-conjugate symmetries
with a maximal total number of ovals, then their topological types are:

1. if g is even and the symmetries do not commute: +1, +1, −g, −g;
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2. if g is even and the symmetries commute: −(2α + 2β + 2δ − 2), −2α,
−(2β + 2γ − 1), −(2γ + 2δ + 1) with 2α+ 2β + 2γ + 2δ = g+ 2, where
α, β, γ, δ > 0 are integers;

3. if g is odd and the symmetries do not commute: +4, +4, +(g − 1),
+(g + 1);

4. if g is odd and the symmetries commute: +(g + 1), +4α, +4β, +4γ
with 2α+ 2β + 2γ = g−1

2 + 4, where α, β, γ, δ > 0 are integers.

Conversely, for all such sets of integers α, β, γ, δ, g as above, we constructed a
Riemann surface having four symmetries with specified types and the maximal
configuration of ovals.

References

[1] E. Bujalance and A. F. Costa, On the group generated by three and four anticonformal

involutions of Riemann surfaces with maximal number of fixed curves, in Mathemati-

cal contributions in honor of Professor Enrique Outerelo Domı́nguez (Spanish), 73–76,
Homen. Univ. Complut, Editorial Complutense, Madrid, 2004.

[2] E. Bujalance, J. J. Etayo, J. M. Gamboa, and G. Gromadzki, Automorphism groups of

compact bordered Klein surfaces, Lecture Notes in Mathematics, 1439, Springer-Verlag,
Berlin, 1990.

[3] G. Gromadzki, On a Harnack-Natanzon theorem for the family of real forms of Riemann
surfaces, J. Pure Appl. Algebra 121 (1997), no. 3, 253–269.

[4] , On ovals on Riemann surfaces, Rev. Mat. Iberoamericana 16 (2000), no. 3,

515–527.
[5] G. Gromadzki and M. Izquierdo, On ovals of Riemann surfaces of even genera, Geom.

Dedicata 78 (1999), no. 1, 81–88.

[6] A. H. M. Hoare and D. Singerman, The orientability of subgroups of plane groups, in
Groups—St. Andrews 1981 (St. Andrews, 1981), 221–227, London Math. Soc. Lecture

Note Ser., 71, Cambridge Univ. Press, Cambridge, 1982.

[7] S. M. Natanzon, Finite groups of homeomorphisms of surfaces and real forms of complex
algebraic curves, Trans. Moscow Math. Soc. 1989, 1–51; translated from Trudy Moskov.

Mat. Obshch. 51 (1988), 3–53, 258.

[8] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cam-
bridge Philos. Soc. 76 (1974), 233–240.

Ewa Koz lowska-Walania

Institute of Mathematics
Faculty of Mathematics

Physics and Informatics

University of Gdańsk
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