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SECOND COHOMOLOGY OF aff(1) ACTING ON n-ARY

DIFFERENTIAL OPERATORS

Imed Basdouri, Ammar Derbali, and Soumaya Saidi

Abstract. We compute the second cohomology of the affine Lie algebra

aff(1) on the dimensional real space with coefficients in the space Dnλ,µ of

n-ary linear differential operators acting on weighted densities where λ =

(λ1, . . . , λn). We explicitly give 2-cocycles spanning these cohomology.

1. Introduction

In mathematical deformation theory one studies how an object in a certain
category of spaces can be varied in dependence on the points of a parameter
space. In other words, deformation theory thus deals with the structure of
families of objects like varieties, singularities, vector bundles, coherent sheaves,
algebras or differentiable maps. Deformation problems appear in various areas
of mathematics, in particular in algebra, algebraic and analytic geometry, and
mathematical physics. Cohomology is a useful tool in Poisson Geometry, plays
an important role in Deformation and Quantization Theory, and attracts more
and more interest among algebraists.

In the theory of Lie groups, Lie algebras and their representation theory, a
Lie algebra extension is an enlargement of a given Lie algebra g by another
Lie algebra h. Extensions arise in several ways. There is the trivial extension
obtained by taking a direct sum of two Lie algebras. Other types are the
split extension and the central extension. Extensions may arise naturally, for
instance, when forming a Lie algebra from projective group representations.
Such a Lie algebra will contain central charges.

Starting with a polynomial loop algebra over finite-dimensional simple Lie
algebra and performing two extensions, a central extension and an extension by
a derivation, one obtains a Lie algebra which is isomorphic with an untwisted
affine Kac-Moody algebra. Using the centrally extended loop algebra one may
construct a current algebra in two spacetime dimensions. The Virasoro algebra
is the universal central extension of the Witt algebra ([2]).
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Central extensions are needed in physics, because the symmetry group of a
quantized system usually is a central extension of the classical symmetry group,
and in the same way the corresponding symmetry Lie algebra of the quantum
system is, in general, a central extension of the classical symmetry algebra (see
[3]).

In 1967, Victor Kac and Robert Moody independently generalized the notion
of classical Lie algebras, resulting in a new theory of infinite-dimensional Lie
algebras, now called Kac-Moody algebras (see [9, 12]). They generalize the
finite-dimensional simple Lie algebras and can often concretely be constructed
as extensions. Kac-Moody algebras have been conjectured to be a symmetry
groups of a unified superstring theory (see [8]). The centrally extended Lie
algebras play a dominant role in quantum field theory, particularly in conformal
field theory, string theory and in M -theory (see [6]). Central extensions are
the simplest extensions of Lie algebras. They appear both in geometry and in
physics. Thus, they play an important role in symplectic geometry [10,13] and
in various versions of quantization (see also [11]).

A large portion towards the end is devoted to background material for appli-
cations of Lie algebra extensions, both in mathematics and in physics, in areas
where they are actually useful. A parenthetical link, (background material), is
provided where it might be beneficial.

Lie algebra extensions are most interesting and useful for infinite-dimensional
Lie algebras. The theory of group extensions and their interpretation in terms
of cohomology is well known, see, e.g., [7]. Let g be a Lie algebra and M a
g-module. The second space H2(g,M) classify the nontrivial extensions of the
Lie algebra g by the module M :

0 −→M −→ · −→ g −→ 0,

the Lie structure on g⊕M being given by

[(g1, α), (g2, β)]g⊕M = ([g1, g2], g1.β − g2.α+ Ω(g1, g2)),

where Ω is a 2-cocycle with values in M .
In this paper we consider a natural class of “non-central” extensions of aff(1),

namely extensions by the modules Dλ,µ of n-ary linear differential operators
acting on weighted densities. The result is quite surprising: there exists a
Ckn+k−1 extensions if and only if µ = λ1 + · · ·+ λn + k, where k ∈ N.

We consider the one-parameter action of the Lie algebra of vector fields
Vect(R) by the Lie derivative on the space C∞(R) of smooth functions on R
defined by:

(1.1) Lλ
X d

dx
(f) = Xf ′ + λfX ′,

where f ∈ C∞(R) and X d
dx ∈ Vect(R) and where the superscript ′ stands for

d
dx . We denote by Fλ the Vect(R)-module structure on C∞(R) defined by the
action (1.1). Geometrically, Fλ is the space weighted densities of weight λ on
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R:

Fλ =
{
fdxλ, f ∈ C∞(R)

}
.

Any differential operator A on R can be viewed as the linear mapping
f(dx)λ 7→ (Af)(dx)µ from Fλ to Fµ (λ, µ in R). Thus the space of differ-
ential operators is a Vect(R)-module, denoted D1

λ,µ := Homdiff(Fλ,Fµ). The

Vect(R) action is:

(1.2) Lλ,µX (A) = LµX ◦A−A ◦ L
λ
X .

More generally we consider the structures Vect(R)-modules on the space
Dnλ,µ of n-linear differential operators: A : Fλ1 ⊗ · · · ⊗ Fλn → Fµ. The Lie

algebra Vect(R) acting on the space Dnλ,µ of n-ary Linear differential operators
by:

(1.3) L
(λ1,...,λn);µ
X (A) = LµX ◦A−A ◦ L

(λ1,...,λn)
X ,

where L
(λ1,...,λn)
X is the Lie derivative defined by the Leibniz rule:

L
(λ1,...,λn)
X (Φ1 ⊗ Φ2 ⊗ · · · ⊗ Φn)(1.4)

= Lλ1

X (Φ1)⊗ Φ2 ⊗ · · · ⊗ Φn + · · ·+ Φ1 ⊗ · · · ⊗ Φn−1 ⊗ Lλn

X (Φn).

2. Definitions and notations

In this section, we recall the main definitions and facts related to the geome-
try of the space R. We also recall some fundamental concepts from cohomology
theory (see, e.g., [5, 7]).

2.1. Cohomology theory

Let us first recall some fundamental concepts from cohomology theory (see,
e.g., [4,5,7,14]). Let g be a Lie algebra acting on a vector space V . The space
of n-cochains of g with values in V is the g-module

Cn(g, V ) := Hom(Λng;V ).

The coboundary operator δn : Cn(g, V ) −→ Cn+1(g, V ) is a g-map satisfying
δn ◦ δn−1 = 0. The kernel of δn, denoted Zn(g, V ), is the space of n-cocycles,
among them, the elements in the range of δn−1 are called n-coboundaries. We
denote Bn(g, V ) the space of n-coboundaries.

By definition, the nth cohomolgy space is the quotient space

Hn(g, V ) = Zn(g, V )/Bn(g, V ).

We will only need the formula of δn (which will be simply denoted δ) in degrees
0, 1 and 2: for Ξ ∈ C0(g, V ) = V , δΞ(x) := x · Ξ, and for Λ ∈ C1(g, V ),

(2.5) δ(Λ)(x, y) := g · Λ(y)− y · Λ(x)− Λ([x, y]) for any x, y ∈ g,

for Ω ∈ C2(g, V ),

δ(Ω)(x, y, z) := x · Ω(y, z)− y · Ω(x, z) + z · Ω(x, y)(2.6)



16 I. BASDOURI, A. DERBALI, AND S. SAIDI

− Ω([x, y], z) + Ω([x, z], y)− Ω([y, z], x),

where x, y, z ∈ g.

2.2. Lie algebra aff(1)

The Lie algebra aff(1) is realized as a subalgebra of the Lie algebra Vect(R)
(see [1]):

aff(1) = Span(X1 =
d

dx
,Xx = x

d

dx
).

The commutation relations are

[X1, Xx] = X1, [Xx, Xx] = 0, [X1, X1] = 0.

2.3. The space of tensor densities on R

The Lie algebra, Vect(R), of vector fields on R naturally acts, by the Lie
derivative, on the space

Fλ =
{
fdxλ : f ∈ C∞(R)

}
,

of weighted densities of degree λ. The Lie derivative LλX of the space Fλ along

the vector field X d
dx is defined by

(2.7) LλX = X∂x + λX ′,

where X, f ∈ C∞(R) and X ′ := dX
dx . More precisely, for all fdxλ ∈ Fλ, we

have

LλX(fdxλ) = (Xf ′ + λfX ′)dxλ.

In the paper, we restrict ourselves to the Lie algebra aff(1) which is isomorphic
to the Lie subalgebra of Vect(R) spanned by

{X1, Xx}.

2.4. The space of n-ary linear differential operators as a aff(1)-mod-
ule

The space of n-ary linear differential operators is a Vect(R)-module, denoted

Dnλ,µ := Homdiff(Fλ1
⊗ · · · ⊗ Fλn

,Fµ).

The Vect(R) action is:

(2.8) L
λ,µ
X (A) = LµX ◦A−A ◦ L

λ
X ,

where λ = (λ1, . . . , λn) and L
(λ1,...,λn)
X is the Lie derivative on Fλ1 ⊗ · · · ⊗ Fλn

defined by the Leibnitz rule:

L
λ
X(f1dx

λ1 ⊗ · · · ⊗ fndxλn)

= Lλ1

X (f1)⊗ · · · ⊗ fndxλn + · · ·+ f1dx
λ1 ⊗ · · · ⊗ Lλn

X (fndx
λn).
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3. The space H2
diff (aff(1),D3

λ,µ)

The first main result of paper is the following.

Theorem 3.1. The space H2
diff(aff(1),D3

λ,µ) has the following structure:

(3.9) H2
diff(aff(1),D3

λ,µ) '

{
RC

k
k+2 if µ = λ1 + λ2 + λ3 + k,

0 otherwise,

where Cpq = q!
(q−p)!p! .

The following 2-cocycles span the corresponding cohomology spaces:

C(X d

dx
, Y

d

dx
)(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)

=

k−1∑
i+j=0

ci,j(XY
′ −X ′Y )f

(i)
1 f

(j)
2 f

(i+j−k)
3 dxλ1+λ2+λ3+k,

where ci,j are constants, f1dx
λ1 ∈ Fλ1

, f2dx
λ2 ∈ Fλ2

, f3dx
λ3 ∈ Fλ3

and X d
dx ,

Y d
dx ∈ aff(1).

We need the following lemma.

Lemma 3.2. Let b ∈ C1(aff(1),D3
λ,λ1+λ2+λ3+k) be defined as follows: for

X d
dx ∈ aff(1), f1dx

λ1 ∈ Fλ1
, f2dx

λ2 ∈ Fλ2
and f3dx

λ3 ∈ Fλ3

b(X)(f1, f2, f3) =
∑

i+j+n=k

ci,j,nXf
(i)
1 f

(j)
2 f

(n)
3 dxµ(3.10)

+
∑

i+j+n=k−1

αi,j,nX
′f

(i)
1 f

(j)
2 f

(n)
3 dxµ,

where the coefficients ci,j,n and αi,j,n are constants.
Then the map δb : aff(1)× aff(1)→ D3

λ,λ1+λ2+λ3+k is given by

δb(X,Y )(f1, f2, f3)(3.11)

= L
λ,λ1+λ2+λ3+k
X b(Y )(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)

− Lλ,λ1+λ2+λ3+k
Y b(X)(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)

− b([X,Y ])(f1dx
λ1 , f2dx

λ2 , f3dx
λ3)

=
∑

i+j+n=k

ci,j,n(µ− λ1 − λ2 − λ3 − k)(X ′Y −XY ′)f (i)
1 f

(j)
2 f

(n)
3 .

3.1. Proof of theorem

Any 2-cocycle C ∈ Z1
diff(aff(1),D3

λ,µ) should be retain the following general
form:

(3.12) C(X,Y )(f1, f2, f3) =
∑

i+j+n=k−1

ci,j,n(XY ′ −X ′Y )f
(i)
1 f

(j)
2 f

(n)
3 dxµ,
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where ci,j,n are constants.
The 2-cocycle condition reads as follows: for all f1dx

λ1 ∈ Fλ1
, f2dx

λ2 ∈ Fλ2
,

f3dx
λ3 ∈ Fλ3

and for all X,Y ∈ aff(1), we have

Lλ1,λ2,λ3,µ
X C(Y, Z)(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)(3.13)

− C([X,Y ], Z)+ 	 (X,Y, Z) = 0,

where 	 (X,Y, Z) denotes summation over the cyclic permutation on X, Y , Z.
A direct computation, proves that we have

Φ1 = Lλ1,λ2,λ3,µ
X C(Y,Z)(f1, f2, f3)

= LµXC(Y,Z)(f1, f2, f3)− C(Y,Z)(Lλ1

X (f1), f2, f3)

− C(Y, Z)(f1, L
λ2

X (f2), f3)− C(Y,Z)(f1, f2, L
λ3

X (f3))

=
∑

i+j+n=k−1

c′i,j,nX(Y Z ′ − Y ′Z)f
(i)
1 f

(j)
2 f

(n)
3

+
∑

i+j+n=k−1

ci,j,n(µ− λ1 − λ2 − λ3 − k + 1)X ′(Y Z ′ − Y ′Z)f
(i)
1 f

(j)
2 f

(n)
3 ,

Φ2 = Lλ1,λ2,λ3,µ
Y C(X,Z)(f1, f2, f3)

=
∑

i+j+n=k−1

c′i,j,nY (XZ ′ −X ′Z)f
(i)
1 f

(j)
2 f

(n)
3

+
∑

i+j+n=k−1

ci,j,n(µ− λ1 − λ2 − λ3 − k + 1)Y ′(XZ ′ −X ′Z)f
(i)
1 f

(j)
2 f

(n)
3 ,

Φ3 = Lλ1,λ2,λ3,µ
Z C(X,Y )(f1, f2, f3)

=
∑

i+j+n=k−1

c′i,j,nZ(XY ′ −X ′Y )f
(i)
1 f

(j)
2 f

(n)
3

+
∑

i+j+n=k−1

ci,j,n(µ− λ1 − λ2 − λ3 − k + 1)Z ′(XY ′ −X ′Y )f
(i)
1 f

(j)
2 f

(n)
3 ,

Ψ1 = C([X,Y ], Z) =
∑

i+j+n=k−1

ci,j,nZ
′(XY ′ −X ′Y )f

(i)
1 f

(j)
2 f

(n)
3 ,

Ψ2 = C([X,Z], Y ) =
∑

i+j+n=k−1

ci,j,nY
′(XZ ′ −X ′Z)f

(i)
1 f

(j)
2 f

(n)
3 ,

Ψ3 = C([Y, Z], X) =
∑

i+j+n=k−1

ci,j,nX
′(Y Z ′ − Y ′Z)f

(i)
1 f

(j)
2 f

(n)
3 .

Then, by considering the equation (3.13), we can write

Lλ1,λ2,λ3,µ
X C(Y,Z)(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)(3.14)
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− C([X,Y ], Z)+ 	 (X,Y, Z) =

3∑
t=1

(Φt −Ψt) = 0.

We show that the equation (3.14) is satisfied only if c′i,j,n = 0 and ci,j,n(µ −
λ1 − λ2 − λ3 − k) = 0.

Any trivial 2-cocycle should be of the form

L
λ,µ
X b(Y )(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)− Lλ,µY b(X)(f1dx
λ1 , f2dx

λ2 , f3dx
λ3)

− b([X,Y ])(f1dx
λ1 , f2dx

λ2 , f3dx
λ3).

By using Lemma 3.2, we have

δb(X,Y )(f1, f2, f3)(3.15)

= L
λ,λ1+λ2+λ3+k
X b(Y )(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)

− Lλ,λ1+λ2+λ3+k
Y b(X)(f1dx

λ1 , f2dx
λ2 , f3dx

λ3)

− b([X,Y ])(f1dx
λ1 , f2dx

λ2 , f3dx
λ3)

=
∑

i+j+n=k

ci,j,n(µ− λ1 − λ2 − λ3 − k)(X ′Y −XY ′)f (i)
1 f

(j)
2 f

(n)
3 .

4. The space H2
diff (aff(1),Dn

λ,µ)

The second main result of paper is the following.

Theorem 4.1. The space H2
diff(aff(1),Dnλ,µ) has the following structure:

(4.16) H2
diff(aff(1),Dnλ,µ) '

{
RC

k
n+k−1 if µ = λ1 + · · ·+ λn + k,

0 otherwise.

The following 2-cocycles span the corresponding cohomology spaces:

C(X d

dx
, Y

d

dx
)(f1dx

λ1 , . . . , fndx
λn)

=

k−1∑
i1+···+in=0

ci1,...,in(XY ′ −X ′Y )f
(i1)
1 · · · f (in)

n dxλ1+···+λn+k,

where ci1,...,in are constants, fidx
λi ∈ Fλi

and X d
dx , Y

d
dx ∈ aff(1).

We need the following lemma.

Lemma 4.2. Let b ∈ C1(aff(1),Dnλ,λ1+···+λn+k) be defined as follows: for

X d
dx ∈ aff(1), fidx

λi ∈ Fλi
.

b(X)(f1, f2, . . . , fn) =
∑

i1+···+in=k

ci1,...,inXf
(i1)
1 · · · f (in)

n dxµ(4.17)

+
∑

i1+···+in=k−1

αi1,...,inX
′f

(i1)
1 · · · f (in)

n dxµ,
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where the coefficients ci1,...,in and αi1,...,in are constants.
Then the map δb : aff(1)⊗2 → Dnλ,λ1+···+λn+k is given by

δb(X,Y )(f1, . . . , fn)(4.18)

= Lλ1,...,λn,λ1+···+λn+k
X b(Y )(f1dx

λ1 , . . . , fndx
λn)

− Lλ1,...,λn,λ1+···+λn+k
Y b(X)(f1dx

λ1 , . . . , fndx
λn)

− b([X,Y ])(f1dx
λ1 , . . . , fndx

λn)

=
∑

i1+···+in=k

ci1,...,in(µ− λ1 − · · · − λn − k)(X ′Y −XY ′)f (i1)
1 · · · f (in)

n .

4.1. Proof of theorem

Any 2-cocycle C ∈ Z1
diff(aff(1),Dnλ,λ1+···+λn+k) should be retain the following

general form:

C(X,Y )(f1, . . . , fn)(4.19)

=
∑

i1+···+in=k−1

ci1,...,in(XY ′ −X ′Y )f
(i1)
1 · · · f (in)

n dxµ,

where ci1,...,in are constants.
The 2-cocycle condition reads as follows: for all fidx

λi ∈ Fλi , and for all
X,Y ∈ aff(1), we have

Lλ1,...,λn;µ
X C(Y, Z)(f1dx

λ1 , . . . , fndx
λn)− C([X,Y ], Z)+ 	 (X,Y, Z) = 0.

A direct computation, proves that the coefficient of the component f
(i1)
1 · · · f (in)

n

in the 2-cocycle condition above is equal to

(4.20) µ− λ1 − · · · − λn − k = 0.

Any trivial 2-cocycle should be of the form

Lλ1,...,λn,µ
X b(Y )(f1dx

λ1 , . . . , fndx
λn)− Lλ1,...,λn,µ

Y b(X)(f1dx
λ1 , . . . , fndx

λn)

− b([X,Y ])(f1dx
λ1 , . . . , fndx

λn).

By using Lemma 4.2, we have

δb(X,Y )(f1, . . . , fn)(4.21)

= Lλ1,...,λn;λ1+···+λn+k
X b(Y )(f1dx

λ1 , . . . , fndx
λn)

− Lλ1,...λn;λ1+···+λn+k
Y b(X)(f1dx

λ1 , . . . , fndx
λn)

− b([X,Y ])(f1dx
λ1 , . . . , fndx

λn)

=
∑

i1+···+in=k

ci1,...,in(µ− λ1 − · · · − λn − k)(X ′Y −XY ′)f (i1)
1 · · · f (in)

n .
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Faculté des Sciences de Gafsa

Tunisie
Email address: basdourimed@yahoo.fr

Ammar Derbali
Université de Gafsa
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