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THE FRACTIONAL WEAK DISCREPANCY OF
(M, 2)-FREE POSETS

JEONG-OK CHOI

ABSTRACT. For a finite poset P = (X, =) the fractional weak discrep-
ancy of P, denoted wdp(P), is the minimum value ¢ for which there is
a function f : X — R satisfying (1) f(z) +1 < f(y) whenever z < y
and (2) |f(z) — f(y)| <t whenever z||y. In this paper, we determine the
range of the fractional weak discrepancy of (M, 2)-free posets for M > 5,
which is a problem asked in [9]. More precisely, we showed that (1) the
range of the fractional weak discrepancy of (M, 2)-free interval orders is
W={g7:7r€NU{0}}u{t € Q:1 <t < M- 3} and (2) the range
of the fractional weak discrepancy of (M, 2)-free non-interval orders is
{t € Q: 1<t < M —3}. The result is a generalization of a well-known
result for semiorders and the main result for split semiorders of [9] since
the family of semiorders is the family of (4, 2)-free posets.

1. Introduction

In this paper we consider only finite posets P = (X, =<). Two elements
x and y in P are comparable if either x < y or y = x. Otherwise they are
incomparable, denoted z||ly. The notation z < y means ¢ < y and = # y.
A subposet P! = (X', <) of P is a poset with X’ as a subset of X and the
inherited comparability from P within the elements of X'.

A discrepancy of a poset is a difference between incomparable elements in
an order-preserving labelling on the poset. There have been a lot of researches
done and going on variations of discrepancies with different constraints since
their introductions ([3,4,10,11]).

In this paper we focus on a particular kind of a discrepancy measuring
“weakness” of posets.

Definition 1.1. The weak discrepancy of a poset P = (X, <), denoted wd(P)
is the smallest integer ¢ such that there is a function f : X — 7Z satisfying
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(1) f(z) < f(y) whenever x < y and
(2) |f(z) = f(y)| <t whenever z|jy.

Such a labelling is called a t-weak labelling. A to-weak labelling is an optimal
weak labelling if wd(P) = t.
We refine the labelling by allowing any real values.

Definition 1.2. The fractional weak discrepancy of a poset P = (X, <), de-
noted wdp(P) is the smallest real number ¢ such that there is a function
f+ X — R satisfying

(1) f(z)+1 < f(y) whenever z <y and

(2) |f(z) = f(y)| <t whenever z|jy.

Such a labelling is called a fractional t-weak labelling. A fractional to-weak
labelling is an optimal fractional weak labelling if wdp(P) = t.

It is known that fractional weak discrepancy is always a rational number.
Moreover, wd(P) = [wdpr(P)]. In some sense, fractional weak discrepancy is
a refinement of weak discrepancy.

A natural question regarding fractional weak discrepancy is to classify posets
allowing large/small fractional weak discrepancy. In other words, it has been
asked which structures could force certain value(s) of fractional weak discrep-
ancy or vice versa. Some results related to these questions can be found in [1],
[7], and [8].

It is trivial to see that wdp(P) < wdp(P’) if P is a subposet of P’. There-
fore, containing a subposet having a large fractional weak discrepancy certainly
forces a large fractional weak discrepancy. However, the converse is not obvious
anymore.

A total order or a chain is a poset any two elements of which are comparable.
A chain with n elements is denoted by n. The length of n is n — 1 and denoted
[(n). The fractional weak discrepancy of any chain is zero by the definition.
More generally, a weak order can be described as a poset whose fractional
weak discrepancy is zero. Traditionally a weak order is described in terms of
forbidden subposets, which is free of 2 4+ 1.

Some well-known families of posets have forbidden characterizations with
disjoint union of only two chains, and in this regard they can be important
families to study.

An interval orderis a poset P = (X, <) with a corresponding (closed) inter-
val assignment [I(z), r(z)] for every element x € X such that y < z if and only
if r(y) <i(z). A semiorder is an interval order with an interval representation
in which every interval has the same length. (For this reason it is also called a
unit interval order.) It is widely known that P is an interval order if and only
if P is 24 2-free. Also, ) is a semiorder if and only if @ is a 3 + 1-free interval
order. A poset is called (M,2)-free if {r +s: r+s= M,r, s > 1} is the set of
forbidden subposets. Hence, the semiorder is the same as the (4, 2)-free order.
A (5,2)-free order is called a subsemiorder.
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There are a number of results about the range of fractional weak discrepancy
of various families including the families mentioned above.

Theorem 1.1 ([5]). A poset P is a semiorder if and only if wdp(P) is in

{77 r=0,reZ}.

Theorem 1.2 ([7]). The range of wdp for interval orders that are n + 1-free
is{t:0<s—1<7r<(n—2)s} forn>3.

For general posets, in fact Trenk [12] and Trenk et al. [8] showed that a value
for wdp requires containing a structure of n + 1 with n almost as big as wdp.
More precisely,

Theorem 1.3 ([8,12]). Every poset P with wdg(P) > n—2 contains an n+1
as a subposet.

In [9], the authors determine the range of fractional weak discrepancy for
split semiorders. The family of split semiorders contains semiorders and is
a subfamily of the family of (5,2)-free posets. In their paper, they present
an open question asking the range of wdp(P) for subsemiorders. Also, more
generally they ask what the range of wdg(P) for (M, 2)-free posets is, M > 5.

2. Main results: The range of the fractional weak discrepancy of
(M, 2)-free order

In this section, we determine all the possible values for the fractional weak
discrepancy of (M, 2)-free posets, for each M > 5.

We use forcing cycles introduced in [2] and [3] as the main tool to calculate
the values of wdp(P).

Definition 2.1 ([3]). A forcing cycle C of a poset P = (X, <) is a sequence
C:x0,21,...,Tm = Tg of m > 2 elements of X for which z; < x; 41 or x;||x;41
foreach i : 0 < i < m. If Cis a forcing cycle, we write up(C) = |{i : x; < Tj41}|
and side(C) = |{i : x;||xit1}]-

Forcing cycles are used to obtain a lower bound.

Theorem 2.1 ([5,6]). Let P = (X, <) be a poset that is not a chain. Then
wdp(P) = maxco ;56((%)), where the maximum is taken over all forcing cycles
C in P. (See [6].)

In fact, if C : zg,z1,...,Tm = o @S a forcing cycle of P and satisfying
to = wdp(P) = S?gé(cg). Let f: P — R be an optimal fractional weak labeling
of P. Then for each 1,

(1) if x5 < xiq1, then f(xip1) = fla;) + 1.
(2) if willzita, then f(xi) — f(ziy1) = to. (See [5].)
A forcing cycle Cy is called an optimal forcing cycle in P if wdp(P) =

up(Co)
side(Co) *
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Theorem 2.2. For every (M,2)-free poset P and M > 4, wdp(P) < M — 3.

Proof. Note that wdp(P) < M —3 by Theorem 1.3 since P has no (M — 1)+1.

Suppose that there is an (M, 2)-free poset P’ with wdp(P’') = M —3. Among
optimal forcing cycles we let C' have the smallest side(C). In other words, if
r=up(C) and ¢ = side(C), then { = M — 3 with minimum possible value for
g. Note that ¢ > 3. Otherwise, C' consists of two incomparable chains in P’,
Cy and Cy with I(Cy) +1(Cy) = 2(M — 3). Hence, C; + Cy becomes m + n,
where (m — 1)+ (n—1) =2(M —3). Then m+n =M + M —4 > M. This
contradicts to the (M, 2)-free condition for P’.

Claim 1. Let C1,Cq,...,C, be the maximal chains of C' in order, where C
consists of xg,Z1,...,Tm—1,Tm = To as in the definition. For any i, [(C;) #
M — 3.

Proof. Suppose to the contrary that there exists C; such that I(C;) = M — 3.
Let x be the highest (or last) element in C;_; and let y be the lowest (or first)
element in Cjy1.

If z||y, then C' = C —{C;} forms a forcing cycle since ¢ > 3. Now % =

w = M — 3 and therefore C” is optimal with side(C”) smaller than
q, which is a contradiction.

If ¢ = 3 and x < y, then the lowest element in C;_; is less than the highest
element in C;11, which is a contradiction. Hence, x £ y.

If ¢ > 4 and « < y, then we reduce the number of cycles by combining

C;_1 and Cy11 and by deleting C; from C'. This new forcing cycle, say C’, has
up(C) _ q(M-— 3) l(C )+1 o up(C)
side(C") 51de(C)

Hence the only pObblblhty is that y < x. If y is comparable to an element
in Cj, say w, then by the definition of a forcing cycle y £ w. Then w < y.
We concatenate C;y1 right after w by combining the lower part of C; to w
and Cjy1. Let this chain be Cj,,. We obtain a new forcing cycle consisting
of (C'—{Cs,Ciy1}) U{C},1}. This has a larger fraction of “up”s and “side”s,
which is a contradiction. Similarly, if z < z for some z in C;, then we combine
the part of C;_1 to x and the part of C; from z. The same contradiction occurs
as before. Therefore, z and y are incomparable to every element in C;. Since
C; = (M — 2) together with y < z now we see that P allows (M — 2) 4+ 2 and
this is a contradiction. O

which is a contradiction.

Now there exists a chain C; such that I(C;) < M —4 and I(Cj_1) > M — 4.
(Therefore, [(Cj_1) > M —2.) Note first that g # 2. To see this, if ¢ = 2, then
C;||Cj=1 and {(C;) + 1(Cj—1) = 2(M — 3) > M, which is a contradiction.
Claim 2. Let y be the first element in C 1. Then y||Cj, i.e., y||2’ for all 2’
in C]

Proof. First of all, y £ «’ for any ' € C;. Otherwise, y < 2’ < T, where
T is the top element in C;. This is a contradiction. Now suppose that there



THE FRACTIONAL WEAK DISCREPANCY OF (M, 2)-FREE POSETS 5

exists " in C; such that 2/ < y, where T # 2" for the top element T in Cj.
Then, now combine the part of C; up to 2” and C;1;. This forms a chain.

Consider C' = C — €', where C' is the part of C; from the next element of z”
in C; to = which forms a forcing cycle consisting of ¢ — 1 chains. Therefore

side(C) = ¢ — 1, up(C) = up(C) — I[(C") = (M — 3)q — I(C"), and

up(C) _ (M =3)g - UC") (M =3)g— (M —5)

side(C) g—1 N q—1
— 1) (M — 2
:(q )213)+ > M -3,

which is a contradiction. O

Let = be the top element in C;_;. Note first that y < x. Otherwise,
we can delete C; from the optimal forcing cycle and the remaining part also
becomes a forcing cycle with either a smaller fraction or M — 3 with smaller g,
contradiction. Let z be the lowest element in C;_; such that y < z. Let C” be
the part of C;_; from z to x.

Case 1) If [(C") +1(C}j) < M — 3, then Cj_; —C” # (). Now we delete C”
and C; from C so that the remaining parts form a forcing cycle with either a
larger fraction or M — 3 with smaller ¢, and this is a contradiction.

Case 2) If I(C") +1(C;) > M — 3, then we claim that C”||C;. To see
this, note first that any element in C"” cannot be less than any element in C;.
(Otherwise, suppose that ¥’ < y”, where y’ € C” and y” € C;, then y < y".)
If there exist an element 2’ in C; and 2’ in C” such that 2’ < 2/, then (the
bottom element in Cj) < &’ < 2’ < x, and this is contradiction.

Finally, C” and C; form m + k, where m = [(C”) + 1 and k = [(C;) + 1.
Therefore, m + k = [(C") +1(Cj) +2 > M —2+2 = M, and this is a
contradiction. O

3. The range of the fractional weak discrepancy of (M, 2)-free
non-interval order

It is relatively easy to determine the range of the fractional weak discrepancy
of (M, 2)-free interval orders according to M. In this section we present results
on the range of the fractional weak discrepancy of (M, 2)-free non-interval or-
ders as well.

Theorem 3.1. For any M > 4, the range of the fractional weak discrepancy of

(M, 2)-free interval orders is W = {f7: r € NU{0}}U{t € Q: 1 <t < M —3}.

Proof. Note first that since an interval order is 2 + 2-free, it does not contain
any a+b with a,b > 2. Also, no (M, 2)-free poset contains an (M —1)+1. In
other words, the intersection of the (M, 2)-free posets and the interval orders
is the set consisting of (M — 1) + 1-free interval orders.
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Pick a value t € W. By Theorem 1.2 for any nonnegative integers r and s
with 0 < s—1 < r < s(M —3) there is a corresponding (M — 1)+ 1-free interval
order P, ) such that wdp(Pq.s) = . We let ’;—: = t, where ged(r’,s’) = 1.
Since t € W, either ' = s’ — 1 or t > 1. In other words, either 7’ = s’ — 1 or
r" > s'. Now, we have r’ = ts' < (M — 3)s’. Therefore, wdp (P ) =t. O

Now we figure out possible values for (M, 2)-free non-interval orders. Note
first that a poset whose fractional weak discrepancy is less than 1 must be a
semiorder which is always an interval order. Therefore every value of wdg for
a non-interval order must be a rational number at least 1. Moreover, every
non-interval order contains 2 + 2, and wdp(2 + 2) = 1. The poset 2 + 2 is
(M, 2)-free for M > 5. By Theorem 2.2 we see that the range of the fractional
weak discrepancy of (M, 2)-free non-interval orders is a subset of A = {t €
Q:1<t<M-3}.

When M > 6 for each value ¢t > 1 in A we construct a corresponding (M, 2)-
free non-interval order P whose fractional weak discrepancy is t. We use two
copies of an interval order for the construction. This construction requires
M > 6 to achieve all the conditions we need. For the remaining case, i.e., for
(5,2)-free non-interval orders, we give a different construction.

Construction 1: When M > 6 for any rational number s, 1 < s < M — 3, let
P be an interval order that is guaranteed in Theorem 1.2 with wdp(P) = s.
Let C1,Ca,. .., Cy be the chains of the forcing cycle (in a circular order) from
the construction in the proof of Theorem 1.2 ([7]). Now it is easy to see the
following result.

Proposition 3.2. Let P be an interval order with wdp(P) > 1 which satisfies
the description in Construction 1. Let C be an optimal forcing cycle with chains
Ch,Cy, ..., C, whose union become the set of elements of P. Let f be an optimal
weak labeling on P. If there is an element x in P with the minimum value

(mazimum value, resp.) of f, then x must be the first (last, resp.) element in
C; for some i and I(C;) > 2.

Proof. Let f be an optimal labeling assigned on an optimal forcing cycle in P.
Let L1 = mingep f(2) and Ly = max,ep f(x). By the second part of Theorem
2.1 ([5]) we see that f on this optimal forcing cycle is determined uniquely up
to an initial value, say f(z¢) for some z( in the forcing cycle.

Among Cjs, let C; be a chain whose top element has the maximum value
of f. If C; consists of only one element, say x, then f(z) = f(z) — wdr(P),
where z is the top element of C;_;1. It means that f(zr) < f(z), which is a
contradiction.

If C; consists of only two elements, say y < x, then f(z) = f(y) +1 =
f(z) —wdp(P)+1 and f(z) > f(z), which is a contradiction.

Similarly, for a chain containing an element with the minimum value of f,
we consider the bottom element of the next chain of C. We apply the same
argument. (I
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Let S1 (S2, resp.) be the set of elements in P with the maximum (minimum,
resp.) value of f, which is defined in the proof of Proposition 3.2. For each
element z € Sy (S2, resp.), we consider the previous (next, resp.) element of
z in its cycle, which is guaranteed in Proposition 3.2, say . We let N (g;
resp.) be the set of such elements. Trivially, there is a natural one-to-one
correspondence between .S; and @, 1=1,2.

Let Ty (T, resp.) be the set of elements = in P such that Ly — f(z) < 1
(f(x) — Ly <1, resp.).

Construction 2: We construct a new poset P’ in the following way:
(1) The elements of P’ consists of {(z,7): x € P, i =1,2}.
(2) We assign comparability relation <ps as follows:

(x,3) <pr (2',1) if and only if z < 2’ in P.
(x,l) jp/ (y,?) 1f$¢51U51UT1 Ory%SQUSQUTQ.
(=, D|(y,2) if z € S1US1 and y € So | Se.

(z,D|(y,2) if(1)xeSyandye€Tror (2) x €Ty and y € Ss.
(z,1) =pr (y,2) |if (1) zeS1andyeThor (2) x €Ty and y € Ss.
(x,1)|[(y,2) ifeeT) andy € Ts.
Note that the comparability between (x,7) and (2',) is inherited from P.

Lemma 3.3. Let P be a poset in Proposition 3.2 and P’ the poset constructed
from P as in Construction 2. If wdp(P) > 2, then wdp(P’) = wdp(P).

Proof. Since P is a subposet of P/, wdp(P) < wdp(P’).
We counsider a labeling g on P’ as follows:
o g((x,1)) = f(x) for all z € P.
* 9((y,2)) = f(y) + (L2 — L)
Claim 1. g is a weak labeling of P’.

Proof. (1) Among any two elements (x,7) and (2/,7), the effect of g is exactly
the restriction on one copy of P, so g is obtained by shifting f.
(2) Consider (z,1) and (y, 2), where (z,1) < (y,2). We have two possibilities.
ecase 1) z ¢ 51U§IUT1 ory ¢ SQUE;UTQ: If v ¢ Slug'IUTl,
then g((z,1)) < Le — 1 and ¢((y,2)) > Ly + (L2 — L1) = La. So,
9((y,2)) > g((x,1)) + 1. We apply the same argument for the case
y ¢ S2US2UTs.

o case2)If x € S and y € Ty, then g((z,1)) = Lo—1 and g((y,2)) = Lo+
€, where 0 < € < 1. Therefore, g((y,2)) — g((z,1)) > € + 1. Similarly,
if 2 € Ty and y € S5, then g((z,1)) = Ly — €/, where 0 < ¢ < 1 and
9((y,2)) = Ly + 1. Therefore, g((y,2)) — g((z,1)) =1+ €. O

There are four types of incomparable pairs.

e (x,1)](«',1) and the maximum difference of their labels is wdp(P).
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o (z,1)|(y,2) with z € S’1U§\1 and y € Sy UEZ Note that Ly — 1 <
o (z,1)]|(y,2) with (1) z € Sy and y € T or (2) x € T} and y € Sa:
9((y,2)) = g((z,1)) < 1.

o (z,1)||(y,2) withz € Ty and y € Tz: g((x,1)) = Ly —€;1 and g((y,2)) =
Ly + e for some 0 < €1,eo < 1. Therefore, g((y,2)) — g((z,1))
€1+ €5 < 2.

Therefore, if wdp(P) > 2, then wdp(P’) < wdp(P). O

Lemma 3.4. Let P be an (M, 2)-free interval order. If P’ is the poset obtained
by Construction 2 using P, then P’ contains 2+2. Hence P’ is not an interval
order. Also, if wdp(P) > M — 4 and M > 6, then P’ is an (M, 2)-free poset.

Proof. First, it is easy to see that P’ contains 2 + 2. We pick an element x in
S1 and its corresponding element Z in 3\1 Similarly, pick an element y in S,
and its corresponding element ¥ in 3; Now z,Z,y, and § form 2 + 2 in P’.
Next we will show that P’ does not contain 2 + 4. This fact implies that
P’ does not contain r + s in P/ where r +s =M, r,s > 2, M > 6. Suppose to
the contrary that P’ contains a 2 + 4. Since the maximum length of a chain in
S U@:USQ U@;UTl UT3 is 2, 4 must contain at least two elements not in

SlLJSl USQUSQUTl UTQ. For X,y € (Slusl USQUSQUTlLJTQ) s if two
of those elements are (z,1) and (y,2), then one of them must be comparable
to an element in the 2, which is a contradiction. Without loss of generality let
those two elements be (z,1) and (y,1). Then any element in the other chain 2
cannot be (z,2). Therefore the elements in 2 must be (z1,1) and (z2,1). Then,
(z,1),(y,1),(21,1), and (z2,1) form a 24 2 in P, which is a contradiction.

Now assume that P’ contains an (M — 1) + 1. If the element a in 1 is not
in Sy UEU S UEEU T, |J Tz, say (x,1), then every element in (M — 1) must
be (y,4) form. This is a contradiction since a (M — 1) 4+ 1 is contained in P.
Hence, the element in 1 is in S7 §I UsaU 3; U UTs.

There are two cases for a = (z,1).

Case 1: (z,i) with z € 5;JS;, i =1,2.

Without loss of generality we assume that a = (z,1). Every element in
(M — 1) is either (y,2) with y € S2|J Sy or (z,1). Since there are at most two
elements with (y,2) form, at least M — 3 elements are of the form (z,1). Let
(21,1) < (22,1) < -+ < (2k,1) be the elements with ¢ = 1 in (M — 1). Hence,
k > M — 3. Note that g((zx,1)) < Ly and g((z;,1)) > ¢((zj—1,1)) + 1 for
j=2,3,...,k. Since M > 6, k is at least 3.

o If a = (z,1) where x is in 51, then we consider (Z,1). ¢((z,1)) =
g((x,1)) =1 = Ly — 1. If we consider (zx_2,1) and (2zx_1,1), then
we know that g((zx—2,1)) < Ly — 2 and ¢g((24-1,1)) < Ly — 1. In
this consequence it is not possible that (Z,1) < (zx—2,1) or (Z,1) <
(zk—1,1). Moreover, if (zx_2,1) < (Z,1) or (zk-1,1) < (Z,1), then



THE FRACTIONAL WEAK DISCREPANCY OF (M, 2)-FREE POSETS 9

it is implied that either (zx_2,1) < @ or (2x—1,1) < a, contradiction.
Now we have that (z,1), (Z, 1), (zx—1, 1) and (zx—2, 1) that are forming
a 2+ 2 (as in the structure of P), which is a contradiction.

e If a = (z,1) where z is in Sy, then let (2, 1) be the element right below
from (z,1) guaranteed by Proposition 3.2. Then g((x,1)) = Ly —1 and
g((2',1)) = Ly — 2.

— If K > M — 2, then we repeat the same argument as above consid-
ering (zx—2,1) and (z;_3,1) that is forcing a 2 + 2 together with
(x,1) and (', 1).

—If &k = M — 3, then (M —1) contains (y1,2) < (y2,2), where
Y1 € 3; and yo € S5. This implies that zp ¢ S UE Therefore
g((zk,1)) < Ly — 1. Now we consider (z;_1,1), (2k—2,1), (z,1),
and (2/,1). By assumption we have that (z, 1)||(zk-1,1), (zk—2, 1).
Also, g((341,1)) < La—2 = g((x/,1)) and g((24_3,1)) < Lo—3 =
g((«’,1))—1. Therefore, the only possibility for those four elements
is to form a 2 + 2, which is a contradiction.

Case 2: z €T;, i =1,2.

Without loss of generality we assume that x € T7 and let a = (z,1). It
is obvious to see that (z,1) is comparable to (y,2) with y € S5. We will use
the same notation as the case k = M — 3 in Case 1 above. Let g((z,1)) =
Ly —e with 0 < € < 1. Since 2z ¢ S1UJT1, 9((2x,1)) < Lz — 1. Therefore
9((z1,1)) < Ly—1— (M —3) = Lo—1—M+3 = Ly — M +2. Now we have that
’LUdF(PI> > g((l‘, 1)) —g((zl, 1)) > L2—€—(L2—M—|—2> = LQ—G—L2+M—2 =
M —3+ (1—¢) > M — 3, which is a contradiction. O
Construction 3: When M = 5 for any rational number ¢, 1 < t < 2, we let
t = £= where r,q € N. For simplicity we assume that r and ¢ are relatively
prime. We consider (r — ¢)3 4+ (2¢ — r)2. Note that r —¢ > 0 and 2¢ —r > 0
since 1 < g < 2. We label these r + g elements in the following way.

[Labelings of elements]

e The j-th element from the bottom in the i-th chain of length 2: xf,
1=1,2,...,7r—qand j =1,2,3. _

e The j-th element from the bottom in the i-th chain of length 1: y/,
1=1,2,...,2¢g—rand j =1,2.

Now we give a labeling f as follows.
fla1) =0,
fla)=20=1) = (= 1)o+ G - D),
0N — (r— g — _r B R A B AU
;) =(r—q—1)(2 q)+2 q+(l 1) — (i 1)q+(J 1).

[Comparability]
Now we add more comparability relations to (r — ¢)3 + (2¢ — r)2.
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(1) For every element is comparable to itself.

(2) @}t fori=1,2,....r —q—1.

(3) yf”yh_1 fori=1,2,...,2¢ —r — 1.

(4) 27_gllyt and y3,_, [|o1.

(5) For the rest, x < y if f(y) > f(z) + 1.

(6) For the rest with # y, x|y if |f(x) — f(y)] < 1.

FIGURE 1. A (5,2)-free poset P with wdp(P) = §. The ele-
ments of P form a forcing cycle with » = 8 and ¢ = 5. The
values of f is written in the parenthesis. P contains 2 + 2 as
a subposet but P has no induced 4 + 1 or 3 + 2.

Theorem 3.5. The poset P from Construction 8 is a (5,2)-free non-interval
order. Moreover, for each given r and q, the fractional weak discrepancy is 2.

Proof. First we make sure that additionally added comparability with tran-
sitivity does not spoil the incomparability in (1), (2), and (3). Let x and y
be incomparable and consecutive elements in the above labelling. In fact, if
two comparability relations were added through (4) such that there exists z
with f(y) > f(z) + 1 and f(z) > f(x) + 1, then 2 > £ = f(y) — f(a) =
fly) = f(z) = (f(z) = f(z)) > 2, which is a contradiction.

It is trivial to see that x%,m%,x?,x%,...,xfij,yhy%,...,ygqfr,x} form a
forcing cycle in P. Therefore, wdp(P) > 7.

Note that f satisfies the conditions in Theorem 2.1. In particular, f(z3) —
fla3) = 7 and x3||23, and this is a maximum possible gap. Therefore wdp(P) =
T
q

%7q,x§7q7y%7y%. It is easy to see that they form an

induced 2+2 in P. By construction 27 _||y{. Now note that 27 ||y in P since
the fact that 1 < f(z_,) — f(y1) = f(z}_,) — (f(y7) —1) < 0 implies that 0 <
flaig)=fyt) < 1. Similarly, |f(z7_,) = f(y1)| < 1and [f(27_,) = f(y?)] < 1.
P is not an interval order then.

Now we consider
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Claim 1. P does not contain 4 + 1 as a subposet.

Proof. Suppose to the contrary that there is an induced 4+1in P. Let a < b <
¢ < d be the elements of 4 and let e be the element of 1. From the construction
rules, f(d) — f(a) = 3. If f(e) = f(d) + ¢, then f(e) — f(a) > £ and this is a
contradiction. If f(e) = f(d) — o then fle)=fla) 23— 7 > 1. Then by the
construction ¢ must have been comparable to c¢. Therefore, |f(d) — f(e)| < 1.
Then |f(e) — f(a)] > 2 so that a < e, which is a contradiction. O

Claim 2. P does not contain 3 + 2 as a subposet.

Proof. Suppose to the contrary that there is an induced 3 4+ 2 in P. Let
a < b < ¢ be the elements of 3 and let d < e be the elements of 2.

If f(c) = f(d) = 7, then f(e) — f(a) = 3 — 7 > 1. We get a contradiction.

If f(e)— f(a) = 7, then f(c)— f(d) = 3—{ > 1. Now we get a contradiction.

If either f(a) — f(e) = § or f(d) — f(c) = £, then we have a similar contra-
diction as above.

Then the only possibility is that |f(c) — f(d)| < 1. Since f(¢) — f(a) > 2,
f(d) — f(a) > 1, which is a contradiction. %
Theorem 3.6. For M > 5 and for every rational number 1 < s < M — 3,
there is an (M, 2)-free poset which is not an interval order with fractional weak
discrepancy s.

Proof. For M =5, we apply Theorem 3.5.

Let Py be the family of (M, 2)-free posets. When M > 6 by Theorems 2.2
and 3.1, for every rational number 2 < M —4 <t < M — 3, there is an interval
order P with wdg(P) =t. Now the poset P’ constructed as above satisfies the
conclusions in Lemmas 3.3 and 3.4, and P’ is a poset we want. (]

4. Conclusion

In this section we interpret our main results as a generalization of the result
on the range of the fractional weak discrepancy for semiorders. We proved that
for M > 5 every (M, 2)-free order has fractional weak discrepancy less than
M — 3. The class of semiorder is the same as the class of (4,2)-free order so
the fractional weak discrepancy must be strictly less than 1, and this result is
consistent with our generalization.

For every M > 4, the family of (M, 2)-free poset is a subfamily of the family
of (M +1,2)-free poset. Let Pas be the family of (M, 2)-free poset. We consider
On = Pars1 — Pu. Every poset P in Qp has M — 3 < wdp(P) < M — 4.
Also, when M > 5 for every rational number ¢t with M —3 <t < M —4
in Q) there are an interval order P and a non-interval order P’ such that
’LUdF(P) = ’LUdF(PI) =1t.
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