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THE FRACTIONAL WEAK DISCREPANCY OF

(M, 2)-FREE POSETS

Jeong-Ok Choi

Abstract. For a finite poset P = (X,�) the fractional weak discrep-
ancy of P , denoted wdF (P ), is the minimum value t for which there is

a function f : X −→ R satisfying (1) f(x) + 1 ≤ f(y) whenever x ≺ y

and (2) |f(x)− f(y)| ≤ t whenever x‖y. In this paper, we determine the
range of the fractional weak discrepancy of (M, 2)-free posets for M ≥ 5,

which is a problem asked in [9]. More precisely, we showed that (1) the

range of the fractional weak discrepancy of (M, 2)-free interval orders is
W = { r

r+1
: r ∈ N ∪ {0}} ∪ {t ∈ Q : 1 ≤ t < M − 3} and (2) the range

of the fractional weak discrepancy of (M, 2)-free non-interval orders is
{t ∈ Q : 1 ≤ t < M − 3}. The result is a generalization of a well-known

result for semiorders and the main result for split semiorders of [9] since

the family of semiorders is the family of (4, 2)-free posets.

1. Introduction

In this paper we consider only finite posets P = (X,�). Two elements
x and y in P are comparable if either x � y or y � x. Otherwise they are
incomparable, denoted x||y. The notation x ≺ y means x � y and x 6= y.
A subposet P ′ = (X ′,�) of P is a poset with X ′ as a subset of X and the
inherited comparability from P within the elements of X ′.

A discrepancy of a poset is a difference between incomparable elements in
an order-preserving labelling on the poset. There have been a lot of researches
done and going on variations of discrepancies with different constraints since
their introductions ([3, 4, 10,11]).

In this paper we focus on a particular kind of a discrepancy measuring
“weakness” of posets.

Definition 1.1. The weak discrepancy of a poset P = (X,�), denoted wd(P )
is the smallest integer t such that there is a function f : X −→ Z satisfying
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(1) f(x) < f(y) whenever x ≺ y and
(2) |f(x)− f(y)| ≤ t whenever x‖y.

Such a labelling is called a t-weak labelling. A t0-weak labelling is an optimal
weak labelling if wd(P ) = t0.

We refine the labelling by allowing any real values.

Definition 1.2. The fractional weak discrepancy of a poset P = (X,�), de-
noted wdF (P ) is the smallest real number t such that there is a function
f : X −→ R satisfying

(1) f(x) + 1 ≤ f(y) whenever x ≺ y and
(2) |f(x)− f(y)| ≤ t whenever x‖y.

Such a labelling is called a fractional t-weak labelling. A fractional t0-weak
labelling is an optimal fractional weak labelling if wdF (P ) = t0.

It is known that fractional weak discrepancy is always a rational number.
Moreover, wd(P ) = dwdF (P )e. In some sense, fractional weak discrepancy is
a refinement of weak discrepancy.

A natural question regarding fractional weak discrepancy is to classify posets
allowing large/small fractional weak discrepancy. In other words, it has been
asked which structures could force certain value(s) of fractional weak discrep-
ancy or vice versa. Some results related to these questions can be found in [1],
[7], and [8].

It is trivial to see that wdF (P ) ≤ wdF (P ′) if P is a subposet of P ′. There-
fore, containing a subposet having a large fractional weak discrepancy certainly
forces a large fractional weak discrepancy. However, the converse is not obvious
anymore.

A total order or a chain is a poset any two elements of which are comparable.
A chain with n elements is denoted by n. The length of n is n− 1 and denoted
l(n). The fractional weak discrepancy of any chain is zero by the definition.
More generally, a weak order can be described as a poset whose fractional
weak discrepancy is zero. Traditionally a weak order is described in terms of
forbidden subposets, which is free of 2 + 1.

Some well-known families of posets have forbidden characterizations with
disjoint union of only two chains, and in this regard they can be important
families to study.

An interval order is a poset P = (X,�) with a corresponding (closed) inter-
val assignment [l(x), r(x)] for every element x ∈ X such that y ≺ z if and only
if r(y) < l(z). A semiorder is an interval order with an interval representation
in which every interval has the same length. (For this reason it is also called a
unit interval order.) It is widely known that P is an interval order if and only
if P is 2 + 2-free. Also, Q is a semiorder if and only if Q is a 3 + 1-free interval
order. A poset is called (M, 2)-free if {r + s : r + s = M, r, s ≥ 1} is the set of
forbidden subposets. Hence, the semiorder is the same as the (4, 2)-free order.
A (5, 2)-free order is called a subsemiorder.
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There are a number of results about the range of fractional weak discrepancy
of various families including the families mentioned above.

Theorem 1.1 ([5]). A poset P is a semiorder if and only if wdF (P ) is in
{ r
r+1 : r ≥ 0, r ∈ Z}.

Theorem 1.2 ([7]). The range of wdF for interval orders that are n + 1-free
is { rs : 0 ≤ s− 1 ≤ r < (n− 2)s} for n ≥ 3.

For general posets, in fact Trenk [12] and Trenk et al. [8] showed that a value
for wdF requires containing a structure of n + 1 with n almost as big as wdF .
More precisely,

Theorem 1.3 ([8,12]). Every poset P with wdF (P ) > n−2 contains an n+1
as a subposet.

In [9], the authors determine the range of fractional weak discrepancy for
split semiorders. The family of split semiorders contains semiorders and is
a subfamily of the family of (5, 2)-free posets. In their paper, they present
an open question asking the range of wdF (P ) for subsemiorders. Also, more
generally they ask what the range of wdF (P ) for (M, 2)-free posets is, M ≥ 5.

2. Main results: The range of the fractional weak discrepancy of
(M, 2)-free order

In this section, we determine all the possible values for the fractional weak
discrepancy of (M, 2)-free posets, for each M ≥ 5.

We use forcing cycles introduced in [2] and [3] as the main tool to calculate
the values of wdF (P ).

Definition 2.1 ([3]). A forcing cycle C of a poset P = (X,�) is a sequence
C : x0, x1, . . . , xm = x0 of m ≥ 2 elements of X for which xi ≺ xi+1 or xi‖xi+1

for each i : 0 ≤ i < m. If C is a forcing cycle, we write up(C) = |{i : xi ≺ xi+1}|
and side(C) = |{i : xi‖xi+1}|.

Forcing cycles are used to obtain a lower bound.

Theorem 2.1 ([5, 6]). Let P = (X,�) be a poset that is not a chain. Then

wdF (P ) = maxC
up(C)
side(C) , where the maximum is taken over all forcing cycles

C in P . (See [6].)
In fact, if C : x0, x1, . . . , xm = x0 is a forcing cycle of P and satisfying

t0 = wdF (P ) = up(C)
side(C) . Let f : P −→ R be an optimal fractional weak labeling

of P . Then for each i,

(1) if xi ≺ xi+1, then f(xi+1) = f(xi) + 1.
(2) if xi‖xi+1, then f(xi)− f(xi+1) = t0. (See [5].)

A forcing cycle C0 is called an optimal forcing cycle in P if wdF (P ) =
up(C0)
side(C0)

.
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Theorem 2.2. For every (M, 2)-free poset P and M ≥ 4, wdF (P ) < M − 3.

Proof. Note that wdF (P ) ≤M−3 by Theorem 1.3 since P has no (M− 1)+1.
Suppose that there is an (M, 2)-free poset P ′ with wdF (P ′) = M−3. Among

optimal forcing cycles we let C have the smallest side(C). In other words, if
r = up(C) and q = side(C), then r

q = M − 3 with minimum possible value for

q. Note that q ≥ 3. Otherwise, C consists of two incomparable chains in P ′,
C1 and C2 with l(C1) + l(C2) = 2(M − 3). Hence, C1 + C2 becomes m + n,
where (m − 1) + (n − 1) = 2(M − 3). Then m + n = M + M − 4 ≥ M . This
contradicts to the (M, 2)-free condition for P ′.

Claim 1. Let C1, C2, . . . , Cq be the maximal chains of C in order, where C
consists of x0, x1, . . . , xm−1, xm = x0 as in the definition. For any i, l(Ci) 6=
M − 3.

Proof. Suppose to the contrary that there exists Ci such that l(Ci) = M − 3.
Let x be the highest (or last) element in Ci−1 and let y be the lowest (or first)
element in Ci+1.

If x‖y, then C ′ = C−{Ci} forms a forcing cycle since q ≥ 3. Now up(C′)
side(C′) =

q(M−3)−(M−3)
q−1 = M − 3 and therefore C ′ is optimal with side(C ′) smaller than

q, which is a contradiction.
If q = 3 and x ≺ y, then the lowest element in Ci−1 is less than the highest

element in Ci+1, which is a contradiction. Hence, x ⊀ y.
If q ≥ 4 and x ≺ y, then we reduce the number of cycles by combining

Ci−1 and Ci+1 and by deleting Ci from C. This new forcing cycle, say C ′, has
up(C′)
side(C′) = q(M−3)−l(Ci)+1

q−2 > up(C)
side(C) , which is a contradiction.

Hence the only possibility is that y ≺ x. If y is comparable to an element
in Ci, say w, then by the definition of a forcing cycle y ⊀ w. Then w ≺ y.
We concatenate Ci+1 right after w by combining the lower part of Ci to w
and Ci+1. Let this chain be C ′i+1. We obtain a new forcing cycle consisting
of (C − {Ci, Ci+1}) ∪ {C ′i+1}. This has a larger fraction of “up”s and “side”s,
which is a contradiction. Similarly, if x ≺ z for some z in Ci, then we combine
the part of Ci−1 to x and the part of Ci from z. The same contradiction occurs
as before. Therefore, x and y are incomparable to every element in Ci. Since
Ci = (M− 2) together with y ≺ x now we see that P allows (M− 2) + 2 and
this is a contradiction. �

Now there exists a chain Cj such that l(Cj) ≤M − 4 and l(Cj−1) > M − 4.
(Therefore, l(Cj−1) ≥M − 2.) Note first that q 6= 2. To see this, if q = 2, then
Cj‖Cj−1 and l(Cj) + l(Cj−1) = 2(M − 3) ≥M , which is a contradiction.

Claim 2. Let y be the first element in Cj+1. Then y‖Cj , i.e., y‖x′ for all x′

in Cj .

Proof. First of all, y ⊀ x′ for any x′ ∈ Cj . Otherwise, y ≺ x′ � x, where
x is the top element in Cj . This is a contradiction. Now suppose that there



THE FRACTIONAL WEAK DISCREPANCY OF (M, 2)-FREE POSETS 5

exists x′′ in Cj such that x′′ ≺ y, where x 6= x′′ for the top element x in Cj .
Then, now combine the part of Cj up to x′′ and Cj+1. This forms a chain.

Consider C̃ = C − C ′, where C ′ is the part of Cj from the next element of x′′

in Cj to x which forms a forcing cycle consisting of q − 1 chains. Therefore

side(C̃) = q − 1, up(C̃) = up(C)− l(C ′) = (M − 3)q − l(C ′), and

up(C̃)

side(C̃)
=

(M − 3)q − l(C ′)
q − 1

≥ (M − 3)q − (M − 5)

q − 1

=
(q − 1)(M − 3) + 2

q − 1
> M − 3,

which is a contradiction. �

Let x be the top element in Cj−1. Note first that y ≺ x. Otherwise,
we can delete Cj from the optimal forcing cycle and the remaining part also
becomes a forcing cycle with either a smaller fraction or M − 3 with smaller q,
contradiction. Let z be the lowest element in Cj−1 such that y ≺ z. Let C ′′ be
the part of Cj−1 from z to x.

Case 1) If l(C ′′) + l(Cj) ≤M − 3, then Cj−1 −C ′′ 6= ∅. Now we delete C ′′

and Cj from C so that the remaining parts form a forcing cycle with either a
larger fraction or M − 3 with smaller q, and this is a contradiction.

Case 2) If l(C ′′) + l(Cj) > M − 3, then we claim that C ′′‖Cj . To see
this, note first that any element in C ′′ cannot be less than any element in Cj .
(Otherwise, suppose that y′ ≺ y′′, where y′ ∈ C ′′ and y′′ ∈ Cj , then y ≺ y′′.)
If there exist an element x′ in Cj and z′ in C ′′ such that x′ ≺ z′, then (the
bottom element in Cj) ≺ x′ ≺ z′ ≺ x, and this is contradiction.

Finally, C ′′ and Cj form m + k, where m = l(C ′′) + 1 and k = l(Cj) + 1.
Therefore, m + k = l(C ′′) + l(Cj) + 2 ≥ M − 2 + 2 = M , and this is a
contradiction. �

3. The range of the fractional weak discrepancy of (M, 2)-free
non-interval order

It is relatively easy to determine the range of the fractional weak discrepancy
of (M, 2)-free interval orders according to M . In this section we present results
on the range of the fractional weak discrepancy of (M, 2)-free non-interval or-
ders as well.

Theorem 3.1. For any M ≥ 4, the range of the fractional weak discrepancy of
(M, 2)-free interval orders is W = { r

r+1 : r ∈ N∪{0}}∪{t ∈ Q : 1 ≤ t < M−3}.

Proof. Note first that since an interval order is 2 + 2-free, it does not contain
any a+b with a, b ≥ 2. Also, no (M, 2)-free poset contains an (M− 1) +1. In
other words, the intersection of the (M, 2)-free posets and the interval orders
is the set consisting of (M− 1) + 1-free interval orders.
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Pick a value t ∈ W . By Theorem 1.2 for any nonnegative integers r and s
with 0 ≤ s−1 ≤ r < s(M−3) there is a corresponding (M− 1)+1-free interval

order P(r,s) such that wdF (P(r,s)) = r
s . We let r′

s′ = t, where gcd(r′, s′) = 1.
Since t ∈ W , either r′ = s′ − 1 or t ≥ 1. In other words, either r′ = s′ − 1 or
r′ ≥ s′. Now, we have r′ = ts′ < (M − 3)s′. Therefore, wdF (P(r′,s′)) = t. �

Now we figure out possible values for (M, 2)-free non-interval orders. Note
first that a poset whose fractional weak discrepancy is less than 1 must be a
semiorder which is always an interval order. Therefore every value of wdF for
a non-interval order must be a rational number at least 1. Moreover, every
non-interval order contains 2 + 2, and wdF (2 + 2) = 1. The poset 2 + 2 is
(M, 2)-free for M ≥ 5. By Theorem 2.2 we see that the range of the fractional
weak discrepancy of (M, 2)-free non-interval orders is a subset of A = {t ∈
Q : 1 ≤ t < M − 3}.

When M ≥ 6 for each value t > 1 in A we construct a corresponding (M, 2)-
free non-interval order P whose fractional weak discrepancy is t. We use two
copies of an interval order for the construction. This construction requires
M ≥ 6 to achieve all the conditions we need. For the remaining case, i.e., for
(5, 2)-free non-interval orders, we give a different construction.

Construction 1: When M ≥ 6 for any rational number s, 1 < s < M − 3, let
P be an interval order that is guaranteed in Theorem 1.2 with wdF (P ) = s.
Let C1, C2, . . . , Cq be the chains of the forcing cycle (in a circular order) from
the construction in the proof of Theorem 1.2 ([7]). Now it is easy to see the
following result.

Proposition 3.2. Let P be an interval order with wdF (P ) > 1 which satisfies
the description in Construction 1. Let C be an optimal forcing cycle with chains
C1, C2, . . . , Cq whose union become the set of elements of P . Let f be an optimal
weak labeling on P . If there is an element x in P with the minimum value
(maximum value, resp.) of f , then x must be the first (last, resp.) element in
Ci for some i and l(Ci) ≥ 2.

Proof. Let f be an optimal labeling assigned on an optimal forcing cycle in P .
Let L1 = minx∈P f(x) and L2 = maxx∈P f(x). By the second part of Theorem
2.1 ([5]) we see that f on this optimal forcing cycle is determined uniquely up
to an initial value, say f(x0) for some x0 in the forcing cycle.

Among Cis, let Cj be a chain whose top element has the maximum value
of f . If Cj consists of only one element, say x, then f(x) = f(z) − wdF (P ),
where z is the top element of Cj−1. It means that f(x) < f(z), which is a
contradiction.

If Cj consists of only two elements, say y ≺ x, then f(x) = f(y) + 1 =
f(z)− wdF (P ) + 1 and f(z) > f(x), which is a contradiction.

Similarly, for a chain containing an element with the minimum value of f ,
we consider the bottom element of the next chain of C. We apply the same
argument. �
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Let S1 (S2, resp.) be the set of elements in P with the maximum (minimum,
resp.) value of f , which is defined in the proof of Proposition 3.2. For each
element x ∈ S1 (S2, resp.), we consider the previous (next, resp.) element of

x in its cycle, which is guaranteed in Proposition 3.2, say x̂. We let Ŝ1 (Ŝ2,
resp.) be the set of such elements. Trivially, there is a natural one-to-one

correspondence between Si and Ŝi, i = 1, 2.
Let T1 (T2, resp.) be the set of elements x in P such that L2 − f(x) < 1

(f(x)− L1 < 1, resp.).

Construction 2: We construct a new poset P ′ in the following way:
(1) The elements of P ′ consists of {(x, i) : x ∈ P, i = 1, 2}.
(2) We assign comparability relation �P ′ as follows:

(x, i) �P ′ (x′, i) if and only if x � x′ in P .

(x, 1) �P ′ (y, 2) if x /∈ S1

⋃
Ŝ1

⋃
T1 or y /∈ S2

⋃
Ŝ2

⋃
T2.

(x, 1)‖(y, 2) if x ∈ S1

⋃
Ŝ1 and y ∈ S2

⋃
Ŝ2.

(x, 1)‖(y, 2) if (1) x ∈ S1 and y ∈ T2 or (2) x ∈ T1 and y ∈ S2.

(x, 1) �P ′ (y, 2) if (1) x ∈ Ŝ1 and y ∈ T2 or (2) x ∈ T1 and y ∈ Ŝ2.
(x, 1)‖(y, 2) if x ∈ T1 and y ∈ T2.

Note that the comparability between (x, i) and (x′, i) is inherited from P .

Lemma 3.3. Let P be a poset in Proposition 3.2 and P ′ the poset constructed
from P as in Construction 2. If wdF (P ) ≥ 2, then wdF (P ′) = wdF (P ).

Proof. Since P is a subposet of P ′, wdF (P ) ≤ wdF (P ′).
We consider a labeling g on P ′ as follows:

• g((x, 1)) = f(x) for all x ∈ P.
• g((y, 2)) = f(y) + (L2 − L1).

Claim 1. g is a weak labeling of P ′.

Proof. (1) Among any two elements (x, i) and (x′, i), the effect of g is exactly
the restriction on one copy of P , so g is obtained by shifting f .

(2) Consider (x, 1) and (y, 2), where (x, 1) ≺ (y, 2). We have two possibilities.

• case 1) x /∈ S1

⋃
Ŝ1

⋃
T1 or y /∈ S2

⋃
Ŝ2

⋃
T2: If x /∈ S1

⋃
Ŝ1

⋃
T1,

then g((x, 1)) < L2 − 1 and g((y, 2)) ≥ L1 + (L2 − L1) = L2. So,
g((y, 2)) ≥ g((x, 1)) + 1. We apply the same argument for the case

y /∈ S2

⋃
Ŝ2

⋃
T2.

• case 2) If x ∈ Ŝ1 and y ∈ T2, then g((x, 1)) = L2−1 and g((y, 2)) = L2+
ε, where 0 < ε < 1. Therefore, g((y, 2)) − g((x, 1)) ≥ ε + 1. Similarly,

if x ∈ T1 and y ∈ Ŝ2, then g((x, 1)) = L2 − ε′, where 0 < ε′ < 1 and
g((y, 2)) = L2 + 1. Therefore, g((y, 2))− g((x, 1)) = 1 + ε′. �

There are four types of incomparable pairs.

• (x, i)‖(x′, i) and the maximum difference of their labels is wdF (P ).
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• (x, 1)‖(y, 2) with x ∈ S1

⋃
Ŝ1 and y ∈ S2

⋃
Ŝ2: Note that L2 − 1 ≤

g((x, 1)) ≤ L2 and L2 ≤ g((y, 2) ≤ L2 + 1. g((y, 2))− g((x, 1)) ≤ 2.
• (x, 1)‖(y, 2) with (1) x ∈ S1 and y ∈ T2 or (2) x ∈ T1 and y ∈ S2:
g((y, 2))− g((x, 1)) < 1.
• (x, 1)‖(y, 2) with x ∈ T1 and y ∈ T2: g((x, 1)) = L2−ε1 and g((y, 2)) =
L2 + ε2 for some 0 < ε1, ε2 < 1. Therefore, g((y, 2)) − g((x, 1)) =
ε1 + ε2 < 2.

Therefore, if wdF (P ) ≥ 2, then wdF (P ′) ≤ wdF (P ). �

Lemma 3.4. Let P be an (M, 2)-free interval order. If P ′ is the poset obtained
by Construction 2 using P , then P ′ contains 2+2. Hence P ′ is not an interval
order. Also, if wdF (P ) ≥M − 4 and M ≥ 6, then P ′ is an (M, 2)-free poset.

Proof. First, it is easy to see that P ′ contains 2 + 2. We pick an element x in

S1 and its corresponding element x̂ in Ŝ1. Similarly, pick an element y in S2

and its corresponding element ŷ in Ŝ2. Now x, x̂, y, and ŷ form 2 + 2 in P ′.
Next we will show that P ′ does not contain 2 + 4. This fact implies that

P ′ does not contain r + s in P ′ where r + s = M , r, s ≥ 2,M ≥ 6. Suppose to
the contrary that P ′ contains a 2 + 4. Since the maximum length of a chain in

S1

⋃
Ŝ1

⋃
S2

⋃
Ŝ2

⋃
T1
⋃
T2 is 2, 4 must contain at least two elements not in

S1

⋃
Ŝ1

⋃
S2

⋃
Ŝ2

⋃
T1
⋃
T2. For x, y ∈

(
S1

⋃
Ŝ1

⋃
S2

⋃
Ŝ2

⋃
T1
⋃
T2

)c
, if two

of those elements are (x, 1) and (y, 2), then one of them must be comparable
to an element in the 2, which is a contradiction. Without loss of generality let
those two elements be (x, 1) and (y, 1). Then any element in the other chain 2
cannot be (z, 2). Therefore the elements in 2 must be (z1, 1) and (z2, 1). Then,
(x, 1), (y, 1), (z1, 1), and (z2, 1) form a 2 + 2 in P , which is a contradiction.

Now assume that P ′ contains an (M− 1) + 1. If the element a in 1 is not

in S1

⋃
Ŝ1

⋃
S2

⋃
Ŝ2

⋃
T1
⋃
T2, say (x, i), then every element in (M− 1) must

be (y, i) form. This is a contradiction since a (M− 1) + 1 is contained in P .

Hence, the element in 1 is in S1

⋃
Ŝ1

⋃
S2

⋃
Ŝ2

⋃
T1
⋃
T2.

There are two cases for a = (x, i).

Case 1: (x, i) with x ∈ Si

⋃
Ŝi, i = 1, 2.

Without loss of generality we assume that a = (x, 1). Every element in

(M− 1) is either (y, 2) with y ∈ S2

⋃
Ŝ2 or (z, 1). Since there are at most two

elements with (y, 2) form, at least M − 3 elements are of the form (z, 1). Let
(z1, i) ≺ (z2, i) ≺ · · · ≺ (zk, i) be the elements with i = 1 in (M− 1). Hence,
k ≥ M − 3. Note that g((zk, 1)) ≤ L2 and g((zj , 1)) ≥ g((zj−1, 1)) + 1 for
j = 2, 3, . . . , k. Since M ≥ 6, k is at least 3.

• If a = (x, 1) where x is in S1, then we consider (x̂, 1). g((x̂, 1)) =
g((x, 1)) − 1 = L2 − 1. If we consider (zk−2, 1) and (zk−1, 1), then
we know that g((zk−2, 1)) ≤ L2 − 2 and g((zk−1, 1)) ≤ L2 − 1. In
this consequence it is not possible that (x̂, 1) ≺ (zk−2, 1) or (x̂, 1) ≺
(zk−1, 1). Moreover, if (zk−2, 1) ≺ (x̂, 1) or (zk−1, 1) ≺ (x̂, 1), then
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it is implied that either (zk−2, 1) ≺ a or (zk−1, 1) ≺ a, contradiction.
Now we have that (x, 1), (x̂, 1), (zk−1, 1) and (zk−2, 1) that are forming
a 2 + 2 (as in the structure of P ), which is a contradiction.

• If a = (x, 1) where x is in Ŝ1, then let (x′, 1) be the element right below
from (x, 1) guaranteed by Proposition 3.2. Then g((x, 1)) = L2−1 and
g((x′, 1)) = L2 − 2.

– If k ≥M − 2, then we repeat the same argument as above consid-
ering (zk−2, 1) and (zk−3, 1) that is forcing a 2 + 2 together with
(x, 1) and (x′, 1).

– If k = M − 3, then (M− 1) contains (y1, 2) ≺ (y2, 2), where

y1 ∈ Ŝ2 and y2 ∈ S2. This implies that zk /∈ S1

⋃
Ŝ1. Therefore

g((zk, 1)) ≤ L2 − 1. Now we consider (zk−1, 1), (zk−2, 1), (x, 1),
and (x′, 1). By assumption we have that (x, 1)‖(zk−1, 1), (zk−2, 1).
Also, g((zk−1, 1)) ≤ L2−2 = g((x′, 1)) and g((zk−2, 1)) ≤ L2−3 =
g((x′, 1))−1. Therefore, the only possibility for those four elements
is to form a 2 + 2, which is a contradiction.

Case 2: x ∈ Ti, i = 1, 2.
Without loss of generality we assume that x ∈ T1 and let a = (x, 1). It

is obvious to see that (x, 1) is comparable to (y, 2) with y ∈ Ŝ2. We will use
the same notation as the case k = M − 3 in Case 1 above. Let g((x, 1)) =
L2 − ε with 0 < ε < 1. Since zk /∈ S1

⋃
T1, g((zk, 1)) ≤ L2 − 1. Therefore

g((z1, 1)) ≤ L2−1−(M−3) = L2−1−M+3 = L2−M+2. Now we have that
wdF (P ′) ≥ g((x, 1))−g((z1, 1)) ≥ L2−ε−(L2−M+2) = L2−ε−L2+M−2 =
M − 3 + (1− ε) > M − 3, which is a contradiction. �

Construction 3: When M = 5 for any rational number t, 1 < t < 2, we let
t = r

q , where r, q ∈ N. For simplicity we assume that r and q are relatively

prime. We consider (r − q)3 + (2q − r)2. Note that r − q > 0 and 2q − r > 0
since 1 < r

q < 2. We label these r + q elements in the following way.

[Labelings of elements]

• The j-th element from the bottom in the i-th chain of length 2: xji ,
i = 1, 2, . . . , r − q and j = 1, 2, 3.
• The j-th element from the bottom in the i-th chain of length 1: yji ,
i = 1, 2, . . . , 2q − r and j = 1, 2.

Now we give a labeling f as follows.

f(x11) = 0,

f(xji ) = 2(i− 1)− (i− 1)
r

q
+ (j − 1),

f(yji ) = (r − q − 1)(2− r

q
) + 2− r

q
+ (i− 1)− (i− 1)

r

q
+ (j − 1).

[Comparability]
Now we add more comparability relations to (r − q)3 + (2q − r)2.
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(1) For every element is comparable to itself.
(2) x3i ‖x1i+1 for i = 1, 2, . . . , r − q − 1.

(3) y2i ‖y1i+1 for i = 1, 2, . . . , 2q − r − 1.

(4) x3r−q‖y11 and y22q−r‖x11.
(5) For the rest, x ≺ y if f(y) ≥ f(x) + 1.
(6) For the rest with 6= y, x‖y if |f(x)− f(y)| < 1.
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x11

x21

x31

x12

x22

x32

x13

x23

x33

y11

y21

y12

y22

(0)

(1)
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( 2
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( 7
5 )

( 12
5 )

( 4
5 )

( 9
5 )

( 14
5 )

( 6
5 )

( 11
5 )

( 3
5 )

( 8
5 )

Figure 1. A (5, 2)-free poset P with wdF (P ) = 8
5 . The ele-

ments of P form a forcing cycle with r = 8 and q = 5. The
values of f is written in the parenthesis. P contains 2 + 2 as
a subposet but P has no induced 4 + 1 or 3 + 2.

Theorem 3.5. The poset P from Construction 3 is a (5, 2)-free non-interval
order. Moreover, for each given r and q, the fractional weak discrepancy is r

q .

Proof. First we make sure that additionally added comparability with tran-
sitivity does not spoil the incomparability in (1), (2), and (3). Let x and y
be incomparable and consecutive elements in the above labelling. In fact, if
two comparability relations were added through (4) such that there exists z
with f(y) ≥ f(z) + 1 and f(z) ≥ f(x) + 1, then 2 > r

q = f(y) − f(x) =

f(y)− f(z)− (f(z)− f(x)) ≥ 2, which is a contradiction.
It is trivial to see that x11, x

2
1, x

3
1, x

1
2, . . . , x

3
r−q, y

1
1 , y

2
1 , . . . , y

2
2q−r, x

1
1 form a

forcing cycle in P . Therefore, wdF (P ) ≥ r
q .

Note that f satisfies the conditions in Theorem 2.1. In particular, f(x12) −
f(x31) = r

q and x12‖x31, and this is a maximum possible gap. Therefore wdF (P ) =
r
q .

Now we consider x2r−q, x
3
r−q, y

1
1 , y

2
1 . It is easy to see that they form an

induced 2+2 in P . By construction x3r−q‖y11 . Now note that x3r−q‖y21 in P since

the fact that 1 < f(x3r−q)− f(y11) = f(x3r−q)− (f(y21)− 1) < 0 implies that 0 <

f(x3r−q)−f(y21) < 1. Similarly, |f(x2r−q)−f(y11)| < 1 and |f(x2r−q)−f(y21)| < 1.
P is not an interval order then.
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Claim 1. P does not contain 4 + 1 as a subposet.

Proof. Suppose to the contrary that there is an induced 4+1 in P . Let a ≺ b ≺
c ≺ d be the elements of 4 and let e be the element of 1. From the construction
rules, f(d)− f(a) ≥ 3. If f(e) = f(d) + r

q , then f(e)− f(a) > r
q and this is a

contradiction. If f(e) = f(d)− r
q , then f(e)− f(a) ≥ 3− r

q > 1. Then by the

construction a must have been comparable to c. Therefore, |f(d)− f(e)| < 1.
Then |f(e)− f(a)| > 2 so that a ≺ e, which is a contradiction. �

Claim 2. P does not contain 3 + 2 as a subposet.

Proof. Suppose to the contrary that there is an induced 3 + 2 in P . Let
a ≺ b ≺ c be the elements of 3 and let d ≺ e be the elements of 2.

If f(c)− f(d) = r
q , then f(e)− f(a) ≥ 3− r

q > 1. We get a contradiction.

If f(e)−f(a) = r
q , then f(c)−f(d) ≥ 3− r

q > 1. Now we get a contradiction.

If either f(a)− f(e) = r
q or f(d)− f(c) = r

q , then we have a similar contra-

diction as above.
Then the only possibility is that |f(c) − f(d)| < 1. Since f(c) − f(a) ≥ 2,

f(d)− f(a) > 1, which is a contradiction. �
�

Theorem 3.6. For M ≥ 5 and for every rational number 1 ≤ s < M − 3,
there is an (M, 2)-free poset which is not an interval order with fractional weak
discrepancy s.

Proof. For M = 5, we apply Theorem 3.5.
Let PM be the family of (M, 2)-free posets. When M ≥ 6 by Theorems 2.2

and 3.1, for every rational number 2 ≤M − 4 ≤ t < M − 3, there is an interval
order P with wdF (P ) = t. Now the poset P ′ constructed as above satisfies the
conclusions in Lemmas 3.3 and 3.4, and P ′ is a poset we want. �

4. Conclusion

In this section we interpret our main results as a generalization of the result
on the range of the fractional weak discrepancy for semiorders. We proved that
for M ≥ 5 every (M, 2)-free order has fractional weak discrepancy less than
M − 3. The class of semiorder is the same as the class of (4, 2)-free order so
the fractional weak discrepancy must be strictly less than 1, and this result is
consistent with our generalization.

For every M ≥ 4, the family of (M, 2)-free poset is a subfamily of the family
of (M+1, 2)-free poset. Let PM be the family of (M, 2)-free poset. We consider
QM = PM+1 − PM . Every poset P in QM has M − 3 ≤ wdF (P ) < M − 4.
Also, when M ≥ 5 for every rational number t with M − 3 ≤ t < M − 4
in QM there are an interval order P and a non-interval order P ′ such that
wdF (P ) = wdF (P ′) = t.
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