참고문헌
- Dajpratham P, Kongkasuwan R. Quality of life among the traumatic spinal c ord injured patients. J Med A ssoc T hai 2011; 94: 1252-9.
- Gerrish HR, Broad E, Lacroix M, Ogan D, Pritchett RC, Pritchett K. Nutrient intake of elite Canadian and American athletes with spinal cord injury. Int J Exerc Sci 2017; 10: 1018-28.
- Anderson KD, Sharp KG, Steward O. Bilateral cervical contusion spinal cord injury in rats. Exp Neurol 2009; 220: 9-22. https://doi.org/10.1016/j.expneurol.2009.06.012
- Gaudet AD, Ayala M T, S chleicher WE, Smith EJ , Bateman EM, Maier SF, et al. Exploring acute-to-chronic neuropathic pain in rats after contusion spinal cord injury. Exp Neurol 2017; 295: 46-54. https://doi.org/10.1016/j.expneurol.2017.05.011
- Dunham KA, Siriphorn A, Chompoopong S, Floyd CL. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats. J Neurotrauma 2010; 27: 2091-106. https://doi.org/10.1089/neu.2010.1424
- Nicaise C, Putatunda R, Hala TJ, Regan KA, Frank DM, Brion JP, et al. Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice. J Neurotrauma 2012; 29: 2748-60. https://doi.org/10.1089/neu.2012.2467
- Krisa L, Frederick KL, Canver JC, Stackhouse SK, Shumsky JS, Murray M. Amphetamine-enhanced motor training after cervical contusion injury. J Neurotrauma 2012; 29: 971-89. https://doi.org/10.1089/neu.2011.1767
- Geremia NM, Hryciw T, Bao F, Streijger F, Okon E, Lee JH, et al. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage. Exp Neurol 2017; 295: 125-34. https://doi.org/10.1016/j.expneurol.2017.06.002
- Kim J, Kim EH, Lee K, Kim B, Kim Y, Na SH, et al. Low-level laser irradiation improves motor recovery after contusive spinal cord injury in rats. Tissue Eng Regen Med 2017; 14: 57-64. https://doi.org/10.1007/s13770-016-0003-4
- Bhatnagar T, Liu J, Yung A, Cripton P, Kozlowski P, Tetzlaff W, et al. Relating histopathology and mechanical strain in experimental contusion spinal cord injury in a rat model. J Neurotrauma 2016; 33: 1685-95. https://doi.org/10.1089/neu.2015.4200
- Wang S, Wu Z, Chiang P, Fink DJ, Mata M. Vector-mediated expression of erythropoietin improves functional outcome after cervical spinal cord contusion injury. Gene Ther 2012; 19: 907-14. https://doi.org/10.1038/gt.2011.166
- Maybhate A, Hu C, Bazley FA, Yu Q, Thakor NV, Kerr CL, et al. Potential long-term benefits of acute hypothermia after spinal cord injury: assessments with somatosensory-evoked potentials. Crit Care Med 2012; 40: 573-9. https://doi.org/10.1097/CCM.0b013e318232d97e
- Liu M, Bose P, Walter GA, Thompson FJ, Vandenborne K. A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal Cord 2008; 46: 488-93. https://doi.org/10.1038/sj.sc.3102169
- Zong S, Zeng G, Wei B, Xiong C, Zhao Y. Beneficial effect of interleukin-1 receptor antagonist protein on spinal cord injury recovery in the rat. Inflammation 2012; 35: 520-6. https://doi.org/10.1007/s10753-011-9341-5
- Bose P, Parmer R, Thompson FJ. Velocity-dependent ankle torque in rats after contusion injury of the midthoracic spinal cord: time course. J Neurotrauma 2002; 19: 1231-49. https://doi.org/10.1089/08977150260338029
- Abdanipour A, Schluesener HJ, Tiraihi T. Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 2012; 16: 90-100.
- Cao Q, Zhang YP, Iannotti C, DeVries WH, Xu XM, Shields CB, et al. Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat. Exp Neurol 2005; 191: S3-16. https://doi.org/10.1016/j.expneurol.2004.08.026
- Zhang YP, Burke DA, Shields LB, Chekmenev SY, Dincman T, Zhang Y, et al. Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences. J Neurotrauma 2008; 25: 1227-40. https://doi.org/10.1089/neu.2007.0388
- Ma Z, Zhang YP, Liu W, Yan G, Li Y, Shields LB, et al. A controlled spinal cord contusion for the rhesus macaque monkey. Exp Neurol 2016; 279: 261-73. https://doi.org/10.1016/j.expneurol.2016.02.008
- Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006; 26: 4308-17. https://doi.org/10.1523/JNEUROSCI.0003-06.2006
- Basso DM, B eattie M S, B resnahan J C. G raded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 1996; 139: 244-56. https://doi.org/10.1006/exnr.1996.0098
- Jiang Y, Zhao S, Ding Y, Nong L, Li H, Gao G, et al. MicroRNA-21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol Med Rep 2017; 16: 2522-8. https://doi.org/10.3892/mmr.2017.6862
- Wang C, Liu C, Gao K, Zhao H, Zhou Z, Shen Z, et al. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury. Biochem Biophys Res Commun 2016; 477: 534-40. https://doi.org/10.1016/j.bbrc.2016.05.148
- Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 2003; 20: 179-93. https://doi.org/10.1089/08977150360547099
- Weber T, Vroemen M, Behr V, Neuberger T, Jakob P, Haase A, et al. In vivo high-resolution MR imaging of neuropathologic changes in the injured rat spinal cord. AJNR Am J Neuroradiol 2006; 27: 598-604.
- Hong Z, Hong H, Chen H, Wang Z, Hong D. Investigation of the protective effect of erythropoietin on spinal cord injury in rats. Exp Ther Med 2011; 2: 837-41. https://doi.org/10.3892/etm.2011.285
- Constantini S, Young W. The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg 1994; 80: 97-111. https://doi.org/10.3171/jns.1994.80.1.0097
- Tang L, Lu X, Zhu R, Qian T, Tao Y, Li K, et al. Adiposederived stem cells expressing the neurogenin-2 promote functional recovery after spinal cord injury in rat. Cell Mol Neurobiol 2016; 36: 657-67. https://doi.org/10.1007/s10571-015-0246-y
- Ek CJ, Habgood MD, Callaway JK, Dennis R, Dziegielewska KM, Johansson PA, et al. Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord. PLoS One 2010; 5: e12021. https://doi.org/10.1371/journal.pone.0012021
- Ek CJ, Habgood MD, Dennis R, Dziegielewska KM, Mallard C, Wheaton B, et al. Pathological changes in the white matter after spinal contusion injury in the rat. PLoS One 2012; 7: e43484. https://doi.org/10.1371/journal.pone.0043484
- Radojicic M, Nistor G, Keirstead HS. Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury. BMC Neurol 2007; 7: 30. https://doi.org/10.1186/1471-2377-7-30
- Lee JH, Streijger F, Tigchelaar S, Maloon M, Liu J, Tetzlaff W, et al. A contusive model of unilateral cervical spinal cord injury using the infinite horizon impactor. J Vis Exp 2012; 65: e3313.
- Sandrow HR, Shumsky JS, Amin A, Houle JD. Aspiration of a cervical spinal contusion injury in preparation for delayed peripheral nerve grafting does not impair forelimb behavior or axon regeneration. Exp Neurol 2008; 210: 489-500. https://doi.org/10.1016/j.expneurol.2007.11.029
피인용 문헌
- Prognostic value of cervical ligamentum flavum thickness as a morphological parameter to predict cervical stenosis vol.100, pp.34, 2019, https://doi.org/10.1097/md.0000000000027084
- Jia-Ji Electro-Acupuncture Improves Locomotor Function With Spinal Cord Injury by Regulation of Autophagy Flux and Inhibition of Necroptosis vol.14, 2021, https://doi.org/10.3389/fnins.2020.616864
- Biological Functions and Therapeutic Potential of Autophagy in Spinal Cord Injury vol.9, 2019, https://doi.org/10.3389/fcell.2021.761273