DOI QR코드

DOI QR Code

기후변화에 따른 메콩강 유역의 미래 유황변화 분석

Analysis of climate change impact on flow duration characteristics in the Mekong River

  • 이대업 (경북대학교 건설방재공학과) ;
  • 이기하 (경북대학교 건설방재공학과) ;
  • 송봉근 (APEC 기후센터 기후사업본부) ;
  • 이승수 (APEC 기후센터 기후사업본부)
  • Lee, Daeeop (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Lee, Giha (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Song, Bonggeun (Climate Services and Research Department, APEC Climate Center) ;
  • Lee, Seungsoo (Climate Services and Research Department, APEC Climate Center)
  • 투고 : 2018.10.01
  • 심사 : 2018.12.04
  • 발행 : 2019.01.31

초록

본 연구에서는 기후변화에 따른 메콩강 유출변화 분석을 목적으로 하고 있다. HadGEM3-RA로 부터 생산된 동아시아 지역 RCP 4.5 및 8.5 시나리오의 일 자료를 기반으로 편의보정을 통해 미래 기후변화 시나리오를 구축한 후, SWAT 모형을 이용하여 메콩강 주요지점인 Kratie(유역면적: $646,000km^2$, 메콩강의 연평균 유량의 88%)에서의 유출변화 모의하고 유황분석을 수행하였다. 기후변화 분석 결과 Kratie 유역의 미래 강수량은 기준 년 연평균 강수량 대비 미래 년 기간의 연평균 강수량은 두 시나리오 모두 증가하는 것으로 분석되었으며 월별 강수량 변화 분석을 통해 6월~11월에 강수량의 증가가 비교적 크게 나타나며 특히 RCP 8.5 시나리오에서 강수량의 변동 폭 및 증가량이 크게 나타남을 확인하였다. 시나리오별 월평균 최대 및 최소기온의 변화는 두 시나리오 모두 미래 기온의 상승을 전망하고 있으며 특히 RCP 8.5 시나리오의 온도증가 폭이 크게 나타나는 것을 확인 하였다. 또한 하천유황변화 분석결과 유역의 유량변동성이 더욱 커질 것으로 분석되었으며 저수계수 값이 52~57% 감소하고 갈수계수 값이 67~74% 감소하는 것으로 나타나 하천의 갈수상황이 지속되어 미래에 가뭄이 보다 심화될 것으로 분석되었다.

The purpose of this study is to analyze the Mekong River streamflow alteration due to climate change. The future climate change scenarios were produced by bias corrections of the data from East Asia RCP 4.5 and 8.5 scenarios, given by HadGEM3-RA. Then, SWAT model was used for discharge simulation of the Kratie, the main point of the Mekong River (watershed area: $646,000km^2$, 88% of the annual average flow rate of the Mekong River). As a result of the climate change analysis, the annual precipitation of the Kratie upper-watershed increase in both scenarios compared to the baseline yearly average precipitation. The monthly precipitation increase is relatively large from June to November. In particular, precipitation fluctuated greatly in the RCP 8.5 rather than RCP 4.5. Monthly average maximum and minimum temperature are predicted to be increased in both scenarios. As well as precipitation, the temperature increase in RCP 8.5 scenarios was found to be more significant than RCP 4.5. In addition, as a result of the duration curve comparison, the streamflow variation will become larger in low and high flow rate and the drought will be further intensified in the future.

키워드

SJOHCI_2019_v52n1_71_f0001.png 이미지

Fig. 1. Geographical distribution of climate change publications in the dataset (Pasgaard and Strange, 2013)

SJOHCI_2019_v52n1_71_f0002.png 이미지

Fig. 2. Flowchart of rainfall-runoff simulation of the Mekong River under climate change

SJOHCI_2019_v52n1_71_f0003.png 이미지

Fig. 3. HadGEM3-RA spatial extent

SJOHCI_2019_v52n1_71_f0004.png 이미지

Fig. 4. The Mekong main stream dams (Việt, 2013)

SJOHCI_2019_v52n1_71_f0005.png 이미지

Fig. 5. Hydrographs based on MRC basin development scenarios (MRC, 2010)

SJOHCI_2019_v52n1_71_f0006.png 이미지

Fig. 6. SWAT modeling domain

SJOHCI_2019_v52n1_71_f0007.png 이미지

Fig. 7. Topographical and geological data for SWAT modeling of the study basin

SJOHCI_2019_v52n1_71_f0008.png 이미지

Fig. 8. Comparison of hydrographs at Chiang Saen and Kratie stations

SJOHCI_2019_v52n1_71_f0009.png 이미지

Fig. 9. Yearly-average precipitation trends of RCP 4.5 and RCP 8.5 scenarios

SJOHCI_2019_v52n1_71_f0010.png 이미지

Fig. 10. Monthly-precipitation distributions and variations of RCP 4.5 and RCP 8.5 scenarios

SJOHCI_2019_v52n1_71_f0011.png 이미지

Fig. 11. Monthly average temperature of RCP 4.5 and RCP 8.5

SJOHCI_2019_v52n1_71_f0012.png 이미지

Fig. 12. Monthly maximum and minimum temperature comparision between RCP 4.5 and RCP 8.5

SJOHCI_2019_v52n1_71_f0013.png 이미지

Fig. 13. Comparison of flow duration curves of the Kratie point

Table 1. Types of RCP scenarios (IPCC, 2013)

SJOHCI_2019_v52n1_71_t0001.png 이미지

Table 2. Estimated optimal parameters by SWAT-CUP

SJOHCI_2019_v52n1_71_t0002.png 이미지

Table 3. Alteration of flow duration

SJOHCI_2019_v52n1_71_t0003.png 이미지

Table 4. Coefficient of flow regime used in this study

SJOHCI_2019_v52n1_71_t0004.png 이미지

참고문헌

  1. Abbaspour, K. C. (2011). SWAT-CUP4: SWAT Calibration and Uncertainty Programs - A User Manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag.
  2. Aggarwal, P. K., and Mall, R. K. (2002). "Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment." Climate Change, Vol. 52, pp. 331-343. https://doi.org/10.1023/A:1013714506779
  3. Allison, E. H., Perry, A. L., Badjeck, M. C., Neil Adger, W., Brown, K., Conway, D., Halls, A. S., Pilling, G. M., Reynolds, J. D., Andrew, N. L., and Dulvy, N. K. (2009). "Vulnerability of national economies to the impacts of climate change on fisheries." Fish and fisheries, Vol. 10, No. 2, pp. 173-196. https://doi.org/10.1111/j.1467-2979.2008.00310.x
  4. Eastham, J., Mpelasoka, F., Mainuddin, M., Ticehurst, C., Dyce, P., Hodgson, G., Ali, R., and Kirby, M. (2008). Mekong river basin water resources assessment: Impacts of climate change., No. 1835-095X, CSIRO.
  5. Giorgi, F., and Francisco, R. (2000). "Evaluating uncertainties in the prediction of regional climate change." Geophysical Research Letters, Vol. 27, No. 9, pp. 1295-1295. https://doi.org/10.1029/1999GL011016
  6. Hoang, P. L., Lauri, H., Kummu, M., Koponen, J., Van Vliet, M. T., Supit, I., Leemans, R., Kabat, P., and Ludwig, F. (2016). "Mekong River flow and hydrological extremes under climate change." Hydrology and Earth System Sciences Discussions, Vol. 20, pp. 3027-3041. https://doi.org/10.5194/hess-20-3027-2016
  7. Hoanh, C. T., Jirayoot, K., Lacombe, G., and Srinetr, V. (2010). "Comparison of climate change impacts and development effects on future Mekong flow regime." International Congress on Environmental Modelling and Software, No. 226.
  8. Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change 2013. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
  9. Joh, H., Park, J., Jang, C., and Kim, S. (2012). "Comparing prediction uncertainty analysis techniques of SWAT simulated stream flow applied to Chungju dam watershed." Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 861-874. https://doi.org/10.3741/JKWRA.2012.45.9.861
  10. Kingston, D. G., Thompson, J. R., and Kite, G. (2011). "Uncertainty in climate change projections of discharge for the Mekong River Basin." Hydrology and Earth System Sciences, Vol. 15, No. 5, pp. 1459-1471. https://doi.org/10.5194/hess-15-1459-2011
  11. Korea Meteorological Administration (KMA) (2012). Case studies to understand and take advantage of climate change scenarios. No. 11-1360000-000871-10, Korea Meteorological Administration, Seoul, Korea.
  12. Kum, D., Park, Y., Jung, Y. H., Shin, M. H., Ryu, J., Park, J. H., Yang, J. E., and Lim, K. J. (2015). "Analysis of rainfall-runoff characteristics on bias correction method of climate change scenarios." Journal of Korean Society on Water Environment, KSWE, Vol. 31, No. 3, pp. 241-252. https://doi.org/10.15681/KSWE.2015.31.3.241
  13. Lauri, H., Moel, H. D., Ward, P. J., Rasanen, T. A., Keskinen, M., and Kummu, M. S. (2012). "Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge." Hydrology and Earth System Sciences, Vol. 16, pp. 4603-4619. https://doi.org/10.5194/hess-16-4603-2012
  14. Lee, G. H., Jung, S. H., and Lee, D. E. (2018). "Comparison of physics-based and data-driven models for streamflow simulation of the Mekong river." Journal of Korea Water Resources Association, Vol. 51, No.6, pp. 503-514. https://doi.org/10.3741/JKWRA.2018.51.6.503
  15. Lee, J. W., Kim, H. S., and Woo, H. S. (1993). "An analysis of the effect of damming on flow duration characteristics of five major rivers in Korea." Journal of Korean Society of Civil Engineers, Vol. 3, pp. 79-91.
  16. Mark, N., and Mike, H. (2000). "Representing uncertainty in climate change scenarios: a Monte-carlo Approach." Integrated Assessment, Vol. 1, No. 3, pp. 203-213. https://doi.org/10.1023/A:1019144202120
  17. Mekong River Commission (MRC) (2010). The MRC Model. Mekong River Commission, Technical Support Division- IKMP, Component 4: Modelling.
  18. Muerth, M. J., Gauvin St-Denis, B., Ricard, S., Velazquez, J. A., Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R., and Turcotte, R. (2013). "On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff." Hydrology and Earth System Sciences, Vol. 17, pp. 1189-1204. https://doi.org/10.5194/hess-17-1189-2013
  19. Park, S. D. (2003). "Dimensionless flow duration curve in natural river." Journal of Korea Water Resources Association, Vol. 36, No. 1, pp. 33-44. https://doi.org/10.3741/JKWRA.2003.36.1.033
  20. Pasgaard, M., and Strange, N. (2013). "A quantitative analysis of the causes of the global climate change research distribution." Global environmental change, Vol. 23, No. 6, pp. 1684-1693. https://doi.org/10.1016/j.gloenvcha.2013.08.013
  21. Schuol, J., Abbaspour, K. C., Srinivasan, R., and Yang, H. (2008). "Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model." Journal of hydrology, Vol. 352, No. 1-2, pp. 30-49. https://doi.org/10.1016/j.jhydrol.2007.12.025
  22. Setegn, S. G., Srinivasan, R., Melesse, A. M., and Dargahi, B. (2010). "SWAT model application and prediction uncertainty analysis in the lake Tana basin, Ethiopia." Hydrological Processes, Vol. 24, pp. 357-367. https://doi.org/10.1002/hyp.7457
  23. Shrestha, B., Babel, M. S., Maskey, S., Griensven, A. V., Uhlenbrook, S., Green, A., and Akkharath, I. (2013). "Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR." Hydrology and Earth System Sciences, Vol. 17, No. 1, pp. 1-20. https://doi.org/10.5194/hess-17-1-2013
  24. Viet, T. (2013). The Lower Mekong Dams Factsheet Text, International Rivers, accessed 28 March 2013, .
  25. World Bank (2010). World Development Report: Development and Climate Change, Washington, D. C., USA.
  26. Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., and Yang, H. (2008). "Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China." Journal of Hydrology, Vol. 358, pp. 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012