DOI QR코드

DOI QR Code

A study on the analyzing of uncertainty for actual evapotranspiration: flux tower, satellite-based and reanalysis based dataset

실제증발산 자료의 불확실성 파악에 관한 연구: flux tower, 인공위성 및 재분석자료

  • Baik, Jongjin (Center for Built Environment, Sungkyunkwan University) ;
  • Jeong, Jaehwan (Department of Water Resources, Sungkyunkwan University) ;
  • Park, Jongmin (Department of Civil and Environmental Engineering, University of Maryland) ;
  • Choi, Minha (Department of Water Resources, Sungkyunkwan University)
  • 백종진 (성균관대학교 건설환경연구소) ;
  • 정재환 (성균관대학교 수자원전문대학원) ;
  • 박종민 (메릴랜드대학교 건설환경공학과) ;
  • 최민하 (성균관대학교 수자원전문대학원)
  • Received : 2018.09.18
  • Accepted : 2018.10.30
  • Published : 2019.01.31

Abstract

In this study, the actual evapotranspiration products of Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM) and MOD16, which are satellite- and reanalysis-based dataset, were validated at the flux tower sites (i.e., CFK and SMK) managed by Korea Institute of Hydrological Survey, and the uncertainty and correlation analysis were conducted using Triple Collocation (TC) method. The result of validation with the flux tower showed better agreement in the order of GLEAM> GLDAS>MOD16. At the result of three combinations (S1: flux tower vs. GLDAS vs. MOD16, S2: flux tower vs. GLDAS vs. GLEAM, S3: flux tower vs. GLEAM vs. MOD16), the order of best to worst is GLEAM, GLDAS, MOD16, and flux tower for CFK (GLDAS> GLEAM>MOD16>flux tower for SMK). Since the error variance and correlation coefficients of the flux tower show relatively worse performance in TC analysis than the other products, By applying TC method to three products (GLDAS vs. GLEAM vs. MOD16), the uncertainty of each dataset were evaluated at the Korean Peninsula, As a results, the GLDAS and GLEAM performed reasonable performance (low error variance and high correlation coefficient), whereas results of MOD16 showed high error variance and low correlation coefficient at the cropland.

본 연구에서는 인공위성 및 재분석 자료인 Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16의 실제증발산량 산출물을 활용하여 한국수자원조사기술원(Korea Institute of Hydrological Survey, KIHS)에서 관리하고 있는 청미천(cheongmicheon farmland site, CFK)과 설마천(seolmacheon site, SMK) flux tower에서 검증하였고, Triple collocation (TC) 방법을 활용하여 자료간의 불확실성 및 상관성분석을 수행하였다. 플럭스타워와의 검증 결과에서는 전반적으로 GLEAM>GLDAS>MOD16순으로 좋은 결과를 나타내었으며, 세가지 산출물의 조합(S1: flux tower vs. GLDAS vs. MOD16, S2: flux tower vs. GLDAS vs. GLEAM, S3: flux tower vs. GLEAM vs. MOD16)을 통한 TC 결과에서는 청미천(설마천)에서 GLEAM>GLDAS>MOD16>flux tower (GLDAS>GLEAM>MOD16>flux tower)순으로 좋은 결과를 나타내었다. TC 분석 결과에서 Flux tower의 error variance와 correlation coefficient가 상대적으로 좋은 결과를 나타내지 못하였으므로, 한반도 지역에서 인공위성과 재분석 자료(GLDAS vs. GLEAM vs. MOD16)만을 활용하여 TC를 적용하였다. 그 결과, GLDAS와 GLEAM이 한반도 영역에서 낮은 error variance 와 높은 correlation coefficient를 나타낸 반면, MOD16의 경우, 농지에서 낮은 correlation coefficient과 높은 error variance를 나타내었다.

Keywords

SJOHCI_2019_v52n1_11_f0001.png 이미지

Fig. 1. Location of two flux tower measurements (SMK and CFK) over korean peninsula

SJOHCI_2019_v52n1_11_f0002.png 이미지

Fig. 2. Variations of the time series of hydrological variables on each months

SJOHCI_2019_v52n1_11_f0003.png 이미지

Fig. 3. Statistical results of three ET products with flux tower measurement at two difference sites over korean peninsula: a) SMK and b) CFK

SJOHCI_2019_v52n1_11_f0004.png 이미지

Fig. 4. Statistical results of three ET products with flux tower measurement at two difference sites over korean peninsula: a) SMK and b) CFK

SJOHCI_2019_v52n1_11_f0005.png 이미지

Fig. 5. Bar chart of error variance and correlation coefficient estimated from ETC and standard TC for each land classification over korean peninsula

SJOHCI_2019_v52n1_11_f0006.png 이미지

Fig. 6. Spatial distribution of error variance and correlation coefficient estimated from ETC and standard TC over Korean peninsula during 2003 to 2014.

References

  1. Alemohammad, S. H., Mccoll, K. A., Konings, A. G., Entekhabi, D., and Stoffelen, A. (2015). "Characterization of precipitation product errors across the United States using multiplicative triple collocation." Hydrology and Earth System Sciences, Vol. 19, pp. 3489-3503. https://doi.org/10.5194/hess-19-3489-2015
  2. Baik, J., and Choi, M. (2015a). "Evaluation of geostationary satellite (COMS) based Priestley-Taylor evapotranspiration." Agricultural Water Management, Vol. 159, pp. 77-91. https://doi.org/10.1016/j.agwat.2015.05.017
  3. Baik., J., and Choi, M. (2015b). "Evaluation of remotely sensed actual evapotranspiration products from COMS and MODIS at two different flux tower sites in Korea." International Journal of Remote Sensing, Vol. 36, No. 1, pp. 375-402. https://doi.org/10.1080/01431161.2014.998349
  4. Baik, J. J., Jeong, J., and Choi, M. (2018) "Estimation of the optimal evapotranspiration by using satellite- and reanalysis model- based evapotranspiration estimations." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 273-280. https://doi.org/10.3741/JKWRA.2018.51.3.273
  5. Byun, K., Liaqat, U. W., and Choi, M. (2014). "Dual-model approaches for evapotranspiration analyses over homo-and heterogeneous land surface conditions." Agricultural and Forest Meteorology, Vol. 197, pp. 169-187. https://doi.org/10.1016/j.agrformet.2014.07.001
  6. Caires, S., and Sterl, A., (2003). "Validation of ocean wind and wave data using triple collocation." JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 108, pp. 1-16.
  7. Choi, G., Kwon, W. T., and Robinson, D. A. (2006). "Seasonal onset and duration in South Korea." Journal of the Korean Geographical Society, Vol. 41, No. 4, pp. 435-456.
  8. Chun, J. A., Baik, J. J., Kim, D., and Choi. M. (2018). "A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates." Ecological Engineering, Vol. 122, pp. 1-9. https://doi.org/10.1016/j.ecoleng.2018.07.015
  9. Gentemann, C. L. (2014). "Three way validation of MODIS and AMSR-E sea surface temperatures." Journal of Geophysical Research: Oceans, Vol. 119, No. 4, pp. 2583-2598. https://doi.org/10.1002/2013JC009716
  10. Gruber, A., Su, C., Zwieback, S., Crow, W., Dorigo, W., and Wagner, W. (2016). "Recent advances in (soil moisture) triple collocation analysis." International Journal of Applied Earth Observation and Geoinformation, Vol. 45, pp. 200-211. https://doi.org/10.1016/j.jag.2015.09.002
  11. Hong, J., Kim, J., Lee, D., and Lim, J. H. (2008). "Estimation of the storage and advection effects on $H_2O$ and $CO_2$ exchanges in a hilly KoFlux forest catchment." Water Resources Research, Vol. 44, W01426, doi:10.1029/2007WR006408.
  12. Hu, G., Jia, L., and Menenti, M. (2015). "Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011." Remote Sensing of Environment, Vol. 156, pp. 510-526. https://doi.org/10.1016/j.rse.2014.10.017
  13. Jang, K., Kang, S., Lim, Y. J., Jeong, S., Kim, J., Kimball, J. S., and Hong, S.Y. (2013). "Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System." Journal of Geophysical Research: Atmospheres, Vol. 118, No. 23, pp. 12-927.
  14. Jeong, J., Baik, J. J., and Choi, M. (2018) "Estimation of dryness index based on COMS to monitoring the soil moisture status at the Korean peninsula." Journal of Korea Water Resources Association, Vol. 51, No. 22, pp. 89-98. https://doi.org/10.3741/JKWRA.2018.51.2.89
  15. Khan, M. S., Liaqat, U. W., Baik, J., and Choi, M. (2018). "Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach." Agricultural and Forest Meteorology, Vol. 252, pp, 256-268. https://doi.org/10.1016/j.agrformet.2018.01.022
  16. Kim, E. H., Kim, M. K., and Lee, W. S. (2005). "The regional characteristics of daily precipitation intensity in Korea for recent 30 years." Journal of the Korean earth science society, Vol. 26, No. 5, pp. 404-416.
  17. Kim, H. D., Im, J. W., and Lee, S. H. (2006). "Distribution of relative evapotranspiration availability using Satellite data in Daegu metropolitan." Journal of the Korean earth science society, Vol. 27, No. 6, pp. 677-686.
  18. Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi, V., Zohaib, M., and Choi, M., (2018). "Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products." Remote Sensing of Environment, Vol. 204, pp. 260-275. https://doi.org/10.1016/j.rse.2017.10.026
  19. Kim, K., Baik, J., Lee, J., Lee, Y., Jung, S., and Choi, M. (2016). "An assessment and analysis of the Gap-filling techniques for revising missing data of flux tower based evapotranspiration- FAO-PM, MDV, and Kalman Filter." The Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 6, pp. 95-107. https://doi.org/10.9798/KOSHAM.2016.16.6.95
  20. Kwon, H., Lee, J-H., Lee, Y-K., and Lee, J. W. (2009) "Seasonal variations of evapotranspiration observed in a mixed forest in the seolmacheon catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 1, pp. 39-47. https://doi.org/10.5532/KJAFM.2009.11.1.039
  21. Lee M. J., Han, K. S., and Kim, I. H. (2011). "Estimation of actual evapotranspiration using multi-satellite data over korea peninsula." Journal of Korean Society for Geospatial Information System, Vol. 19, No. 4, pp. 145-151.
  22. Mccoll, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and Stoffelen, A. (2014). "Extended triple collocation: estimating errors and correlation coefficients with respect to an unknown target." Geophysical Research Letters, Vol. 41, pp. 6229-6236. https://doi.org/10.1002/2014GL061322
  23. Mu, Q., Zhao, M., and Running, S. W. (2011). "Improvements to a MODIS global terrestrial evapotranspiration algorithm." Remote Sensing of Environment, Vol. 115, No. 8, pp. 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019
  24. Scipal, K., Holmes, T., Jeu, R., De, Naeimi, V., and Wagner, W. (2008). "A possible solution for the problem of estimating the error structure of global soil moisture data sets." Geophysical Research Letters, Vol. 35, pp. 2-5.
  25. Shin S. H., and An, T. Y. (2009) "Development of estimating method for areal evapotranspiration using satellite data." Journal of the Korean Association of Geographic Information Studies, Vol. 10, No. 2, pp. 70-80.
  26. Stoffelen, A. (1998), "Toward the true near -surface wind speed: Error modeling and calibration using triple collocation." Journal of Geophysical Research: Oceans, Vol. 103, pp. 7755-7766. https://doi.org/10.1029/97JC03180
  27. Su, C., Ryu, D., Crow, W. T., and Western, A. W. (2014a). "Remote sensing of environment standalone error characterisation of microwave satellite soil moisture using a fourier method." Remote Sensing of Environment, Vol. 154, pp. 115-126. https://doi.org/10.1016/j.rse.2014.08.014
  28. Su, C. H., Ryu, D., Crow, W. T., and Western, W. A., (2014b). "Beyond triple collocation: applications to soil moisture monitoring." Journal of Geophysical Research: Atmospheres, Vol. 119, No. 11, pp. 6419-6439. https://doi.org/10.1002/2013JD021043
  29. Sur, C. Y., and Choi, M. (2011). "An intercomparison of two satellite data-based evapotranspiration approaches." Journal of Wetlands Research, Vol. 13, No. 3, pp. 471-479. https://doi.org/10.17663/JWR.2011.13.3.471
  30. Webb, E. K., Pearman, G. I., and Leuning, R. (1980). "Correction of flux measurements for density effects due to heat and water vapour transfer." Quarterly Journal of the Royal Meteorological Society, Vol. 106, No. 47, pp. 85-100. https://doi.org/10.1002/qj.49710644707