DOI QR코드

DOI QR Code

TELEMAC-2D를 적용한 개수로 분류부 유량비 변화에 의한 흐름특성 분석

Numerical analysis of flow characteristics at the bifurcation channel by changing of discharge ratio using TELEMAC-2D

  • 정대진 (한국농어촌공사 충남지역본부) ;
  • 장창래 (한국교통대학교 토목공학과) ;
  • 정관수 (충남대학교 토목공학과)
  • Jung, Daejin (Chungnam Regional Headquarters of Korea Rural Cooperation) ;
  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation) ;
  • Jung, Kwansue (Department of Civil Engineering, Chungnam National University)
  • 투고 : 2018.05.14
  • 심사 : 2018.10.29
  • 발행 : 2019.01.31

초록

본 연구에서는 분류부 흐름에 대한 TELEMAC-2D 2차원 수치모형의 적용성을 검증하고, 수치실험을 통한 분류유량비 계산식의 비교분석, 분류유량비 변화에 따른 분류부 흐름특성 변화를 분석하였다. 본 수치모형은 분류부 수심평균 유속분포와 수위에 대해 실내실험결과와 잘 일치하는 결과를 나타냈다. 주수로의 하류방향 관성력과 모멘트가 감소하면 분류유량비가 증가하게 되고, 분류수로에서 상대적인 고유속 분포구간은 넓어지며, 분류수로 주흐름의 역방향 유속은 감소한다. 분류유량비가 증가할수록 분류수로 내 흐름분리구역 규모는 감소하며, 흐름분리구역 규모 산정시 유선분포 작도뿐만 아니라 종방향 프루우드 수가 $Fr{\approx}0$이 되는 지점 확인으로 더 명확하게 산정할 수 있다.

This study investigates the flow characteristics, such as velocity distributions, size and location of recirculation zone, longitudinal flow change rates, and bifurcation discharge ratio in the bifurcation channel by TELEMAC-2D, a 2D numerical model. The numerical model is validated by previous experimental results and the numerical results are in relatively good agreement with the experimental results, such as the water surface elevation and velocity distribution in the channels. As the inertial force and moment in the main channel decrease, the bifurcation discharge ratio increases, and the relative high velocity distribution becomes wider and the reverse velocity of the main stream decreases in the branch channel. As the bifurcation discharge ratio increases, the size of the recirculation zone in the branch channel decreases and it can be more clearly calculated by determining the point where the longitudinal froude number $Fr{\approx}0$ as well as drawing the distribution of the streamline distribution.

키워드

SJOHCI_2019_v52n1_1_f0001.png 이미지

Fig. 1. Flow patterns (Neary and Sotiropoulos, 1996)

SJOHCI_2019_v52n1_1_f0002.png 이미지

Fig. 2. Experimental set-up (Shettar and Murthy, 1996)

SJOHCI_2019_v52n1_1_f0003.png 이미지

Fig. 3. Depth-averaged velocity distribution

SJOHCI_2019_v52n1_1_f0004.png 이미지

Fig. 4. Water surface profiles

SJOHCI_2019_v52n1_1_f0005.png 이미지

Fig. 5. Measurement sections for the experiments

SJOHCI_2019_v52n1_1_f0006.png 이미지

Fig. 6. Limitations of F2H and Qr (Hsu et al., 2002)

SJOHCI_2019_v52n1_1_f0007.png 이미지

Fig. 7. Comparison of discharge ratio (Qr)

SJOHCI_2019_v52n1_1_f0008.png 이미지

Fig. 8. 2-Dimensional computed streamlines pattern

SJOHCI_2019_v52n1_1_f0009.png 이미지

Fig. 9. Contraction coefficient in the branch channel

SJOHCI_2019_v52n1_1_f0010.png 이미지

Fig. 10. Streamlines distributions

SJOHCI_2019_v52n1_1_f0011.png 이미지

Fig. 11. Depth-averaged velocity distribution

SJOHCI_2019_v52n1_1_f0012.png 이미지

Fig. 12. Froude number distributions

SJOHCI_2019_v52n1_1_f0013.png 이미지

Fig. 13. Longitudinal froude number in the branch channel

Table 1. Flow conditions for physical experiments

SJOHCI_2019_v52n1_1_t0001.png 이미지

Table 2. Flow conditions for physical experiments

SJOHCI_2019_v52n1_1_t0002.png 이미지

Table 3. Flow conditions for numerical experiments

SJOHCI_2019_v52n1_1_t0003.png 이미지

참고문헌

  1. Barkdoll, B., Ettema, R., and Odgaard, A. (1999). "Sediment control at lateral diversions: limits and enhancements to vane use." Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 8, pp. 862-870. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(862)
  2. Barkdoll, B. D., Hagen, B. L., and Odgaard, A. J. (1998). "Experimental comparison of dividing open channel with duct flow in t-junction." Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 1, pp. 92-95. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(92)
  3. Chen, H. B., and Lian, G. S. (1992). "The numerical computation of turbulent flow in t-junction." Journal of Hydrodynamics, No. 3, pp. 50-58.
  4. El Kadi Abderrezzak, K., and Paquier, A. (2009). Discussion of "Numerical and experimental study of dividing open-channel flows" by AS ramamurthy, junying qu, and diep vo. Journal of Hydraulic Engineering, ASCE, Vol. 135, No. 12, pp. 1111-1112. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000009
  5. Ghostine, R., Vazquez, J., Terfous, A., Riviere, N., Ghenaim, A., and Mose, R. (2013). "A comparative study of 1D and 2D approaches for simulating flows at right angled dividing junctions." Applied Mathematics and Computation, Vol. 219, No. 10, pp. 5070-5082. https://doi.org/10.1016/j.amc.2012.11.048
  6. Hager, W. H. (1992). Discussion of "Dividing flow in open channels" by amruthur S. ramamurthy, duc minh tran, and luis B. carballada (march, 1990, vol. 116, no. 3). Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 4, pp. 634-637. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(634)
  7. Herrero Casas, A. (2013). Experimental and Theoretical Analysis of Flow and Sediment Transport in 90-Degree Fluvial Diversions. Research report, Sediment Transport Research Group (GITS), Spain.
  8. Hsu, C. C., Tang, C. J., Lee, W. J., and Shieh, M. Y. (2002). "Subcritical $90^{\circ}$ equal-width open-channel dividing flow." Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 7, pp. 716-720. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(716)
  9. Jung, D. J., Jang, C. L., and Jung, K. S. (2016). "Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC- 2D." Journal of Korea Water Resources Association, Vol. 49, No. 7, pp. 635-644. https://doi.org/10.3741/JKWRA.2016.49.7.635
  10. Kasthuri, B., and Pundarikanthan, N. V. (1987). "Discussion on separation zone at open channel junction." Journal of Hydraulic Engineering, ASCE, Vol. 113, No. 4, pp. 543-548. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(543)
  11. Keshavarzi, A., and Habibi, L. (2005). "Optimizing water intake angle by flow separation analysis." Irrigation and Drainage, Vol. 54, No. 5, pp. 543-552. https://doi.org/10.1002/ird.207
  12. Lai, Y. G. (2010). "Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh." Journal of Hydraulic Engineering, ASCE, Vol. 136, No. 1, pp. 12-23. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000134
  13. Mignot, E., Doppler, D., Riviere, N., Vinkovic, I., Gence, J., and Simoens, S. (2014). "Analysis of flow separation using a local frame axis: Application to the open-channel bifurcation." Journal of Hydraulic Engineering, ASCE, Vol. 140, No. 3, pp. 280-290. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000828
  14. Ministry of Land, Infrastructure and Transport (MOLIT) (2015). Guideline for Setting up of Basic River Plans. Korean.
  15. Ministry of Land, Transport, and Maritime Affairs (MLTMA) (2009). Standard and Commentary of River Design. Korean.
  16. Neary, V. S., and Sotiropoulos, F. (1996). "Numerical investigation of laminar flows through 90-degree diversions of rectangular Cross-section." Computers and Fluids, Vol. 25, No. 2, pp. 95-118. https://doi.org/10.1016/0045-7930(95)00030-5
  17. Neary, V. S., Sotiropoulos, F., and Odgaard, A. J. (1999). "Threedimensional numerical model of lateral intake inflows." Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 2, pp. 126-140. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(126)
  18. Nezu, I., and Nakagawa, H. (1993). Turbulence in open-channel Flows. Taylor & Francis.
  19. Ramamurthy, A. S., Junying, Qu., and Diep, V. (2007). "Numerical and experimental study of dividing open-channels flows." Journal of Hydraulic Engineering, ASCE, Vol. 133, No. 10, pp. 1135-1144. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135)
  20. Ramamurthy, A., Minh Tran, D., and Carballada, L. (1990). "Dividing flow in open channels." Journal of Hydraulic Engineering, ASCE, 116(3), 449-455. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:3(449)
  21. Rao, N. L., and Sridharan, K. (1967). "Division of flow in open channels." Water and Energy International, Vol. 24, No. 4, pp. 393-407.
  22. Satish, M., Ramarnurthy, A., and Narasiah, K. (1989). "Pressure recovery in dividing open channels." Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 7, pp. 995-999. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:7(995)
  23. Schielen, R. M. J., Havinga, H., and Lemans, M. (2008). "Dynamic control of the discharge distributions of the Rhine River in the Netherlands." Proceedings of River Flow 2008-Fourth International Conference on Fluvial Hydraulics, Izmir, Turkey, September 3-5, pp. 1765-1772.
  24. Shamloo, H., and Pirzadeh, B. (2007). "Numerical investigation of velocity field in dividing open-channel flow." Proceedings of the 12th WSEAS International Conference on APPLIED MATHEMATICS, Cairo, Egypt, Desember 29-31, pp. 194-198.
  25. Shettar, A. S., and Murthy, K. K. (1996). "A numerical study of division of flow in open channels." Journal of Hydraulic Research, Vol. 34, No. 5, pp. 651-675. https://doi.org/10.1080/00221689609498464
  26. Song, C. G., and Seo, I. W. (2012). "Numerical simulation of convection- dominated flow using SU/PG scheme." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 32, No. 3B, pp. 175-183. https://doi.org/10.12652/KSCE.2012.32.3B.175