DOI QR코드

DOI QR Code

Hesperetin Ameliorates Inflammatory Responses in Lipopolysaccharide-stimulated RAW 264.7 Cells via p38 MAPK and ERK1/2

마우스 대식세포 RAW 264.7 세포주에서 hesperetin에 의한 p38 MAPK와 ERK1/2를 통한 염증반응 조절

  • Lee, Seung-Hoon (Department of Biological Sciences, Andong National University) ;
  • Lee, Eun-Joo (Department of Biological Sciences, Andong National University) ;
  • Chung, Chungwook (Department of Biological Sciences, Andong National University) ;
  • Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
  • 이승훈 (국립안동대학교 생명과학과) ;
  • 이은주 (국립안동대학교 생명과학과) ;
  • 정정욱 (국립안동대학교 생명과학과) ;
  • 손호용 (국립안동대학교 식품영양학과) ;
  • 김종식 (국립안동대학교 생명과학과)
  • Received : 2018.12.07
  • Accepted : 2019.01.04
  • Published : 2019.01.30

Abstract

In a previous study, we isolated 11 different kinds of compounds from ethyl acetate fractions of lees (jubak) which is a by-product of Korean traditional wine production. These compounds were identified as caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, and vanilic acid. To evaluate their anti-inflammatory activities in an in vitro model, nitric oxide (NO) production was measured in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after the treatment of these cells with each compound. Among the various chemicals, hesperetin and naringenin showed the highest inhibition of NO production in the LPS-activated RAW 264.7 cells. Hesperetin was chosen for further study because of its strong anti-inflammatory activity and because the mechanisms underlying its anti-inflammatory properties still remain unclear. Our results showed that hesperetin dramatically inhibited NO production in a dose-dependent manner as compared with in an LPS-only treated group, without affecting cell viability. In addition, hesperetin reduced the protein expression of the pro-inflammatory gene inducible nitric oxide synthase (iNOS) in a dose-dependent manner, whereas it did not affect cyclooxygenase-2 (COX-2) expression. Furthermore, hesperetin inhibited phosphorylation of p38 mitogen- activated protein kinase (MAPK) and extracellular signal regulated kinase (ERK) 1/2, whereas it did not affect phosphorylation of c-jun N- terminal kinase (JNK). The results indicated that hesperetin regulated the LPS-induced inflammatory response by suppressing p38 MAPK and ERK1/2 signaling. Overall, our results may help to understand the mechanisms underlying the anti-inflammatory activity mediated by hesperetin.

이전 연구에서 전통주 주박 ethyl acetate 분획물로부터 11개의 순수물질을 분리 동정하였다. 11개의 순수물질은 caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, 그리고 vanilic acid로 동정되었다. 이번 연구에서는 그들의 항염증 활성을 연구하기 위하여 LPS로 활성화된 RAW 264.7 세포에서 nitric oxide (NO) 생산을 측정하였다. 11개의 순수물질 중 hesperetin과 naringenin이 가장 높은 NO 생성 억제를 보여주었다. 또한, hesperetin은 세포 생존율에 영향 없이 농도의존적으로 NO 생산을 저해하였다. 그리고, hesperetin은 농도의존적으로 염증유전자인 iNOS의 발현을 농도의존적으로 억제한 반면, COX-2 단백질의 발현에는 영향을 주지 않았다. 게다가, hesperetin은 p38 MAPK와 ERK1/2의 인산화를 억제한 반면 JNK의 인산화에는 영향을 주지 못했다. 이러한 결과는 hesperetin은 항염증 활성을 가지며, 이러한 항염증 활성은 p38 MAPK와 ERK1/2 경로를 억제함으로써 일어난다는 것을 나타낸다.

Keywords

SMGHBM_2019_v29n1_129_f0001.png 이미지

Fig. 1. Effects of 11 different kinds of pure compounds on NO production and cell viability in LPS-stimulated RAW 264.7 cells.

SMGHBM_2019_v29n1_129_f0002.png 이미지

Fig. 2. Effects of hesperetin on NO production and cell viability in LPS-activated RAW 264.7 cells.

SMGHBM_2019_v29n1_129_f0003.png 이미지

Fig. 3. Down-regulation of iNOS protein by hesperetin.

SMGHBM_2019_v29n1_129_f0004.png 이미지

Fig. 4. Suppression of the phosphorylation of p38 MAPK and ERK1/2 by hesperetin treatment.

References

  1. Ahmadi, A. and Shadboorestan, A. 2015. Oxidative stress and cancer: the role of hesperidin, a Citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr. Cancer 18, 1-12. https://doi.org/10.1080/01635589209514201
  2. Akira, S. and Takeda, K. 2004. Toll-like receptor signaling, Nat. Rev. Immunol. 4, 499-511. https://doi.org/10.1038/nri1391
  3. Anderson, N. and Borlak, J. 2008. Molecular mechanisms and therapeutic targets in steatosis and steatoheptitis. Pharmacol. Rev. 60, 311-357. https://doi.org/10.1124/pr.108.00001
  4. Chen, W., Ge, X., Xu, F., Zhang, y., Liu, Z., Pan, J., Song, J., Dai, Y., Zhou, J., Feng, J. and Liang, G. 2015. Design, synthesis and biological evaluation of paralleled aza resveratrol-chalcone componds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg. Med. Chem. Lett. 25. 2998-3004. https://doi.org/10.1016/j.bmcl.2015.05.030
  5. Chen, X., Ding, H. W., Li, H. D., Huang, H. M., Li, X. F., Yang, Y., Zhang, Y. L., Pan, X. Y., Huang, C., Meng, X. M. and Li, J. 2017. Hesperetin derivative-14 alleviates inflammation by activating PPAR-${\gamma}$ in mice with $CCl_4$-induced acute liver injury and LPS-treated RAW264.7 cells. Toxicol. Lett. 274, 51-63. https://doi.org/10.1016/j.toxlet.2017.04.008
  6. Fang, Q., Deng, L., Wang, L., Zhang, Y., Weng, Q., Yin, H., Pan, Y., Tong, C., Wang, J. and Liang, G. 2015. Inhibition of mitogen-activated protein kinases/nuclear factor ${\kappa}B$-dependent inflammation by a novel chalcone protects kidney from high fat diet-induced injuries in mice. J. Pharmacol. Exp. Ther. 355, 235-246. https://doi.org/10.1124/jpet.115.226860
  7. Jacobsen, M. C., Dusart, P. J., Korowicz, K., Bajaj-Eliott, M., Hart, S. L., Klein, N. J. and Dixon, G. L. 2016. A critical role for ATF2 transcription factor in the regulation of E-selectin expression in response to non-endotoxin components of Neisseria meningitides. Cell Microbiol. 18, 66-79. https://doi.org/10.1111/cmi.12483
  8. Ju, A., Cho, Y. C. and Cho, S. 2015. Methanol extracts of Xanthium sibiricum roots inhibit inflammatory response via the inhibition of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) and signal transducer and activator of transctiption 3 (STAT3) in murine macrophages. J. Ethnopharmacol. 174, 74-81. https://doi.org/10.1016/j.jep.2015.07.038
  9. Khalifa, H. O., Kamimoto, M., Shimamoto, T. and Shimamoto, T. 2015. Antimicrobial effects of blueberry, raspberry, and strawberry aqueous extracts and their effects on virulence gene expression in Vibrio cholerae. Phytother. Res. 29, 1791-1797. https://doi.org/10.1002/ptr.5436
  10. Kim, H. G., Shi, C., Bode, A. M. and Dong, Z. 2015. $p38{\alpha}$ MAPK is required for arsenic-induced cell transformation. Mol. Carcinog. 55, 910-917. https://doi.org/10.1002/mc.22331
  11. Kuwano, T., Watanabe, M., Kagawa, D. and Murase, T. 2015. Hydrolyzed methyl-hesperidin induces anti-oxidant enzyme expression via the Nrf2-ARE pathway in normal human epidermal keratinocytes. J. Agric. Food Chem. 63, 7937-7944. https://doi.org/10.1021/acs.jafc.5b01992
  12. Lee, E. S., Ju, H. K., Moon, T. C., Lee, E., Jahng, Y., Lee, S. H. and Chang, H. W. 2004. Inhibition of nitric oxide and tumor necrosis factor-alpha (TNF-alpha) production by prepenone compound through blockade of nuclear factor (NF)-${\kappa}B$ activation in cultured murine macrophages. Biol. Pharm. Bull. 27, 617-620. https://doi.org/10.1248/bpb.27.617
  13. Lee, H. J., Lee, W. J., Chang, S. E. and Lee, G. Y. 2015. Hesperidin, A popular antioxidant inhibits melanogenesis via ERK1/2 mediated MITF degradation. Int. J. Mol. Sci. 16, 18384-18395. https://doi.org/10.3390/ijms160818384
  14. Lee, H. S., Kim, D. H., Hong, J. E., Lee, J. Y. and Kim, E. J. 2015. Oxyresveratrol suppresses lipopolysaccharide-induced inflammatory responses in murine macrophages. Hum. Exp. Toxicol. 34, 808-818. https://doi.org/10.1177/0960327114559989
  15. Li, G., Wulan, H., Song, Z., Paik, P. A., Tsao, M. L., Goodman, G. M., MacEachern, P. T., Downey, R. S., Jankowska, A. J., Rabinowitz, Y. M., Learch, T. B., Song, D. Z., Yuan, J. J., Zheng, S. and Zheng, Z. 2015. Regulatory B cell function is suppressed by smoking and obesity in H. pylori-infected subjects and is correlated with elevated risk of gastric cancer. PLoS One 10, e0134591. https://doi.org/10.1371/journal.pone.0134591
  16. Li, H., Zhang, Q., Jin, X., Zou, X., Wang, Y., Hao, D., Fu, F., Jiao, W., Zhang, C., Lin, H., Matsuzaki, K. and Zhao, F. 2018. Dysifragilone A inhibits LPS-induced RAW264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol. Med. Rep. 17, 674-682.
  17. Mrvova, N., Skandik, M., Kuniakova, M. and Rackova, L. 2015. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem. Int. 90, 246-254. https://doi.org/10.1016/j.neuint.2015.09.005
  18. Oliveira, A. M., Mesquita, M. S., Silva, G. C., Oliveria, L. E., Medeiros, P. L., Paiva, P. M., Souza, I. A. and Napoleao, T. H. 2015. Evaluation of toxicity and antimicrobial activity of an ethanolic extract from leaves of Morus alba L. (Moaceae). Evid. Based Complement Alternat. Med. 2015, 513978.
  19. Sahu, B. D., Kumar, J. M. and Sistla, R. 2015. Baicalein, a bioflavonoid, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defense and down-regulating the MAPKs and $NF-{\kappa}B$ pathways. Plos One 10, e0134139. https://doi.org/10.1371/journal.pone.0134139
  20. Sung, M. J., Davaatseren, M., Kim, S. H., Kim, M. J. and Hwang, J. T. 2013. Boehmeria nivea attenuates LPS-induced inflammatory markers by inhibiting p38 and JNK phosphorylation in RAW264.7 macrophages. Pharm. Biol. 51, 1131-1136. https://doi.org/10.3109/13880209.2013.781196
  21. Vlkova, M., Ticha, O., Nechvatalova, J., Kalina, T., Litzman, J., Mauri, C. and Blair, P. A. 2015. Regulatory B cells in CVID patients fail to suppress multi-functional IFN-gamma+TNF-alpha+CD4+ T cells differentiation. Clin. Immunol. 29, 292-300.
  22. Wang, Q. Q., Shi, J. B., Chen, C., Huang, C., Tang, W. J. and Li, J. 2016. Hesperetin derivatives: Synthesis and antiinflammatory activity. Bioorg. Med. Chem. Lett. 26, 1460-1465. https://doi.org/10.1016/j.bmcl.2016.01.058
  23. Wu, C., Zhao, W., Zhang, X. and Chen, X. 2015. Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of $NF-{\kappa}B$ and iNOS signaling pathways. Acta Pharm. Sin. B. 5, 323-329 https://doi.org/10.1016/j.apsb.2015.01.010
  24. Zamora-Ros, R., Guino, E., Henar, A. M., Vidal, C., Barenys, M., Soriano, A. and Moreno, V. 2015. Dietary flavonoids, lignans and colorectal cancer prognosis. Sci. Rep. 5, 14148. https://doi.org/10.1038/srep14148
  25. Zhang, Y., Liu, D., Fang, L., Zhao, X., Zhou, A. and Xie, J. 2018. A galactomannoglucan derived from Agaricus brasiliensis: Purification, characterization and macrophage activation via MAPK and $I{\kappa}B/NF{\kappa}B$ pathways. Food Chem. 239, 603-611. https://doi.org/10.1016/j.foodchem.2017.06.152