DOI QR코드

DOI QR Code

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice

항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과

  • Choi, Yun-Jung (Laboratory Animal Resource Center, DGIST) ;
  • Min, Gyesik (Department of Nursing, College of Life Science, Gyeongnam National University of Science & Technology)
  • 최윤정 (대구경북과학기술원 실험동물센터) ;
  • 민계식 (경남과학기술대학교 생명과학대학 간호학과)
  • Received : 2018.11.12
  • Accepted : 2019.01.10
  • Published : 2019.01.30

Abstract

In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Histone deacetylase (HDAC)-6은 전사조절 및 세포질 내 다양한 단백질들과의 상호작용을 통하여 난소암의 유발에 관여한다. 최근, HDAC-6을 표적으로 하는 특이적 억제제를 활용하여 암세포의 신호전달경로를 차단함으로써 새로운 항암제로서의 개발을 모색하고 있다. 특히, 난소암 치료를 위한 화학요법에서는 생식세포에 미치는 영향이 하나의 중요한 난제가 될 수 있다. 그러나, HDAC-6 억제제가 난소암세포 이외의 생식세포에 미치는 영향에 대한 연구는 아직 미흡한 실정이다. 따라서, 본 연구에서는 HDAC-6 억제제의 하나인 tubastatin A (TubA)가 생쥐의 난소 내 미성숙 난자에 미치는 영향을 RNA sequencing 분석을 통하여 검증하였다. 이러한 유전자 집합을 이용한 통계적 분석은 기존의 개별 유전자분석의 한계를 극복하여 대량의 생물학적 정보를 산출함으로써, 세포 내 신호전달경로와 같은 복잡한 생물학적 변화상태를 보다 더 광범위하고 민감하게 파악할 수 있을 뿐만 아니라 의미있는 결과의 도출에 도움을 줄 수 있다. Gene set enrichment analysis (GSEA) 결과, 세포주기와 감수분열의 조절 및 진행에 관여하는 gene sets의 발현이 germinal vesicle (GV)과 비교하여 TubA 처리군에서 대부분 감소되었다. 또한, ingenuity pathway analysis (IPA)를 통하여 TubA가 난모세포 내 p53 및 pRB의 발현을 증가시키고 CDK4/6 및 cyclin D의 발현을 감소시킬 뿐만 아니라, G2/M 단계의 DNA checkpoint 조절에 관여하는 유전자들의 발현을 증가시킴을 확인하였다. 이러한 결과는 TubA가 난소 내 미성숙 난자의 DNA 손상과 세포주기 관련 신호전달경로 유전자들의 발현변화를 유도함으로써, 세포주기의 중지와 세포사멸을 초래할 수 있음을 제시한다. 따라서, 특히 생식주기 이전의 난소암을 표적으로 하는 HDAC-6 억제제를 이용한 항암제의 개발에 있어 난소 내 미성숙 난자의 정상적인 성장과 발달을 위한 대안적 고려가 필요할 것으로 사료된다.

Keywords

SMGHBM_2019_v29n1_105_f0001.png 이미지

Fig. 1. RNA-seq analysis of GV, TubA10, TubA20, and MII stage oocytes.

SMGHBM_2019_v29n1_105_f0002.png 이미지

Fig. 2. Gene set enrichment analysis (GSEA).

SMGHBM_2019_v29n1_105_f0003.png 이미지

Fig. 3. Analysis of the G0/G1 checkpoint regulation pathway by IPA.

SMGHBM_2019_v29n1_105_f0004.png 이미지

Fig. 4. Analysis of the G2/M DNA damage checkpoint regulation pathway by IPA.

References

  1. Aguirre-Ghiso, J. A. 2007. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834-846. https://doi.org/10.1038/nrc2256
  2. Bolden, J. E., Shi, W., Jankowski, K., Kan, C. Y., Cluse, L., Martin, B. P., MacKenzie, K. L., Smyth, G. K. and Johnstone, R. W. 2013. HDAC inhibitors induce tumor-cell- selective pro-apoptotic transcriptional responses. Cell Death Dis. 4, e519. https://doi.org/10.1038/cddis.2013.9
  3. Chang, J. C. 2016. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 95, S20-S25. https://doi.org/10.1097/MD.0000000000004766
  4. Corney, D. C., Flesken-Nikitin, A., Choi, J. and Nikitin, A. Y. Role of p53 and Rb in ovarian cancer. Adv. Exp. Med. Biol. 622, 99-177.
  5. Delcuve, G. P., Khan, D. H. and Davie, J. R. 2012. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin. Epigenetics 4, 5. https://doi.org/10.1186/1868-7083-4-5
  6. Dong, Z., Yang, Y., Liu, S., Lu, J., Huang, B. and Zhang, Y. 2017. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer. Oncotarget 9, 512-523. https://doi.org/10.18632/oncotarget.23070
  7. Haakenson, J. and Zhang, X. 2013. HDAC6 and ovarian cancer. Int. J. Mol. Sci. 14, 9514-9535. https://doi.org/10.3390/ijms14059514
  8. Halsall, J. A. and Turner, B. M. 2016. Histone deacetylase inhibitors for cancer therapy: An evolutionarily ancient resistance response may explain their limited success. Bioessays 38, 1102-1110. https://doi.org/10.1002/bies.201600070
  9. Hervouet, E., Cheray, M., Vallette, F. M. and Cartron, P. F. 2013. DNA methylation and apoptosis resistance in cancer cells. Cells 2, 545-573. https://doi.org/10.3390/cells2030545
  10. Lernoux, M., Schnekenburger, M., Dicato, M. and Diederich, M. 2018. Anti-cancer effects of naturally derived compounds targeting histone deacetylase 6-related pathways. Pharmacol. Res. 129, 337-356. https://doi.org/10.1016/j.phrs.2017.11.004
  11. Mottamal, M., Zheng, S., Huang, T. L. and Wang, G. 2015. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20, 3898-3941. https://doi.org/10.3390/molecules20033898
  12. Phi, L. T. H., Sari, I. N., Yang, Y. G., Lee, S. H., Jun, N., Kim, K. S., Lee, Y. K. and Kwon, H. Y. 2018. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018, 5416923.
  13. Shin, H. J., Baek, K. H., Jeon, A. H., Kim, S. J., Jang, K. L., Sung, Y. C., Kim, C. M. and Lee, C. W. 2003. Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation. Oncogene 22, 3853-3858. https://doi.org/10.1038/sj.onc.1206502
  14. Suraweera, A., O'Byrne, K. J. and Richard, D. J. 2018. Combination therapy with Histone Deacetylase Inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol. 29, 92. https://doi.org/10.3389/fonc.2018.00092
  15. Takai, N. and Narahara, H. 2010. Histone deacetylase inhibitor therapy in epithelial ovarian cancer. J. Oncol. 2010, 458431.
  16. Tsuda, H., Yamamoto, K., Inoue, T., Uchiyama, I. and Umesaki, N. 2000. The role of p16-cyclin D/CDK-pRB pathway in the tumorigenesis of endometrioid-type endometrial carcinoma. Br. J. Cancer 82, 675-682. https://doi.org/10.1054/bjoc.1999.0980
  17. Wang, X., Simpson, E. R. and Brown, K. A. 2015. p53: Protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res. 75, 5001-5007. https://doi.org/10.1158/0008-5472.CAN-15-0563
  18. Wilson, A., Laurenti, E., Oser, G., van der Wath, R. C., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C. F., Eshkind, L., Bockamp, E., Lio, P., Macdonald, H. R. and Trumpp, A. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118-1129. https://doi.org/10.1016/j.cell.2008.10.048
  19. Yoon, S. and Eom, G. H. 2016. HDAC and HDAC inhibitor: From cancer to cardiovascular disease. Chonnam. Med. J. 52, 1-11. https://doi.org/10.4068/cmj.2016.52.1.1
  20. Yoon, S., Kim, S. Y. and Nam, D. 2016. Improving gene-set enrichment analysis of RNA-seq data with small replicates. PLoS One 11, e0165919. https://doi.org/10.1371/journal.pone.0165919
  21. Zhou, D., Choi, Y. J. and Kim, J. H. 2017. Histone deacetylase 6 (HDAC6) is an essential factor for oocyte maturation and asymmetric division in mice. Sci. Rep. 7, 8131. https://doi.org/10.1038/s41598-017-08650-2