Fig. 1. Growth analysis of S. iniae, E. coli, B. subtilis, E. piscicida. The absorbance and viable count were measured every 12 hours. The absorbance was measured at OD600, and the number of viable cells was determined by counting the colonies formed in the BHI agar plate after serial dilution with 0.85% NaCl solution.(A)S. iniae FP5228, (B) E. coli DH5a, (C) B. subtilis subsp. subtilis, (D) E. piscicida CK41; dark gray line : OD600, gray line : viable count (CFU/ml).
Fig. 2. Construction of overexpression vector of toxin and antitoxin in S. iniae FP5228. (A) pBP1140 vector construction process. (B) Confirmation of pBP1140 vector using PCR. M : marker, lane 1 ; antitoxin ε : 287 bp, lane 2; pBAD :: toxin ζ : 2643bp, lane 3 ; toxin ζ : 864 bp.
Fig. 3. Growth analysis of toxin antitoxin overexpressed E. coli. The growth rate of the arabinose overexpressing strain at the early stage of growth was slower than the other conditions. (A) Growth curves measured using absorbance (OD 600nm). (B) Growth curves measured by viable count. (log CFU/ml/1,000,000), ◆ : control, ■ : IPTG induction, ▲ : Arabinose induction, × : IPTG & arabinose induction.
Fig. 4. Morphological changes of E. coli BL21 overexpressing Toxin. Overexpression of toxin in E. coli BL21 confirmed that the cell length was prolonged. (Gram staining, ×400) ; (A) control (not induction), (B) IPTG induction, (C) Arabionse induction, (D) IPTG & arabinose induction.
Fig. 5. Characteristic difference between wild type S. iniae (FP 5228) and plasmid-cured S. iniae (CK287). (A) Growth curves and viable counts of S. iniae FP5228 and CK287. It was confirmed that the decrease in viable cells was slightly improved in CK287.; ◆ OD600 of FP5228, ▲: OD600 of CK287, ■: CFU/ml of FP5228, ×: CFU/ml of CK287. (B) Plasmid preparation of S. iniae FP5228 and CK287.; lane 1 : FP5228, lane 2 : CK287. Plasmid size: 13,781 bp.
Fig. 6. Comparison of biofilm formation between S. iniae FP5228 and CK287.
Fig. 7. MTT assay between S. iniae FP5228 and CK287. In all cases, wild type S. iniae showed lower value than CK287. (n=3) (*p< 0.1).
Fig. 8. Virulence of S. iniae strains in zebrafish. To confirm the virulence, different concentrations of bacteria were inoculated. Survival rate was measured for 12 days. ◆, FP5228 108 CFU/fish; ■, FP5228 107 CFU/fish; ▲, FP5228 106 CFU/fish; Χ, CK287 108 CFU/fish; Ж, CK287 107 CFU/fish; ●, CK287 106 CFU/fish.
Table 1. PCR primers used in this study
References
- Aakre, C. D., Phung, T. N., Huang, D. and Laub, M. T. 2013. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the beta sliding clamp. Mol. Cell. 52, 617-628. https://doi.org/10.1016/j.molcel.2013.10.014
- Agnew, W. and Barnes, A. C. 2007. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet. Microbiol. 122, 1-15. https://doi.org/10.1016/j.vetmic.2007.03.002
- Baiano, J. C. and Barnes, A. C. 2009. Towards control of Streptococcus iniae. Emerg. Infect. Dis. 15, 1891-1896. https://doi.org/10.3201/eid1512.090232
- Brown, J. M. and Shaw, K. J. 2003. A novel family of Escherichia coli toxin-antitoxin gene pairs. J. Bacteriol. 185, 6600-6608. https://doi.org/10.1128/JB.185.22.6600-6608.2003
- Fozo, E. M., Hemm, M. R. and Storz, G. 2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72, 579-589, Table of Contents. https://doi.org/10.1128/MMBR.00025-08
- Gerdes, K. 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182, 561-572. https://doi.org/10.1128/JB.182.3.561-572.2000
- Hayes, F. 2003. Toxins-antitoxins: Plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496-1499. https://doi.org/10.1126/science.1088157
- Hernandez, E., Figueroa, J. and Iregui, C. 2009. Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J. Fish. Dis. 32, 247-252. https://doi.org/10.1111/j.1365-2761.2008.00981.x
- Kim, Y. and Hwang, J. 2016. Bacterial toxin-antitoxin systems and their biotechnological applications. J. Life Sci. 26, 265-274. https://doi.org/10.5352/JLS.2016.26.2.265
- Labrie, S. J., Samson, J. E. and Moineau, S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317-327. https://doi.org/10.1038/nrmicro2315
- Llorens, J. M. N., Tormo, A. and Martinez-Garcia, E. 2010. Stationary phase in gram-negative bacteria. FEMS. Microbiol. Rev. 34, 476-495. https://doi.org/10.1111/j.1574-6976.2010.00213.x
- Locke, J. B., Colvin, K. M., Varki, N., Vicknair, M. R., Nizet, V. and Buchanan, J. T. 2007. Streptococcus iniae beta-hemolysin streptolysin S is a virulence factor in fish infection. Dis. Aquat. Org. 76, 17-26. https://doi.org/10.3354/dao076017
- Madigan, M. T. 2015. Brock biology of microorganisms. Boston, Pearson.
- Mchugh, G. L. and Swartz, M. N. 1977. Elimination of plasmids from several bacterial sSpecies by novobiocin. Antimicrob. Agents Chemother. 12, 423-426. https://doi.org/10.1128/AAC.12.3.423
- Mutschler, H., Gebhardt, M., Shoeman, R. L. and Meinhart, A. 2011. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9, e1001033. https://doi.org/10.1371/journal.pbio.1001033
- Mutschler, H. and Meinhart, A. 2011. epsilon/zeta systems: their role in resistance, virulence, and their potential for antibiotic development. J. Mol. Med. 89, 1183-1194. https://doi.org/10.1007/s00109-011-0797-4
- O'Toole, G. A. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 47, pii: 2437. https://doi.org/10.3791/2269
- Sambrook, J., Russell, D. W. and Sambrook, J. 2006. The condensed protocols from Molecular cloning : a laboratory manual. Cold Spring Harbor, N. Y.,Cold Spring Harbor Laboratory Press.
- Sun, J. R., Yan, J. C., Yeh, C. Y., Lee, S. Y. and Lu, J. J. 2007. Invasive infection with Streptococcus iniae in Taiwan. J. Med. Microbiol. 56, 1246-1249. https://doi.org/10.1099/jmm.0.47180-0
- Tabone, M., Ayora, S. and Alonso, J. C. 2014. Toxin zeta reversible induces dormancy and reduces the UDP-N-acetylglucosamine pool as one of the protective responses to cope with stress. Toxins (Basel). 6, 2787-2803. https://doi.org/10.3390/toxins6092787
- Van Melderen, L. and De Bast, M. S. 2009. Bacterial toxinantitoxin systems: More than selfish entities? PLoS Genet. 5, e1000437. https://doi.org/10.1371/journal.pgen.1000437
- Wang, X. X., Lord, D. M., Hong, S. H., Peti, W., Benedik, M. J., Page, R. and Wood, T. K. 2013. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ. Microbiol. 15, 1734-1744. https://doi.org/10.1111/1462-2920.12063
- Yao, X., Chen, T., Shen, X., Zhao, Y., Wang, M., Rao, X., Yin, S., Wang, J., Gong, Y., Lu, S., Le, S., Tan, Y., Tang, J., Fuquan, H. and Li, M. 2015. The chromosomal SezAT toxin- antitoxin system promotes the maintenance of the SsPI-1 pathogenicity island in epidemic Streptococcus suis. Mol. Microbiol. 98, 243-257. https://doi.org/10.1111/mmi.13116
- Yu, J. E., Cho, M. Y., Kim, J. W. and Kang, H. Y. 2012. Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb. Pathog. 52, 259-266. https://doi.org/10.1016/j.micpath.2012.01.006
- Zlotkin, A., Chilmonczyk, S., Eyngor, M., Hurvitz, A., Ghittino, C. and Eldar, A. 2003. Trojan horse effect: phagocyte-mediated Streptococcus iniae infection of fish. Infect. Immun. 71, 2318-2325. https://doi.org/10.1128/IAI.71.5.2318-2325.2003