Fig. 1. Phylogenetic position of Pseudomonas sp. BCNU 1204 based on 16S ribosomal RNA gene sequences.
Fig. 2. Cell growth of Pseudomonas aeruginosa BCNU 1204 cultured in a King's medium B and antibiotic activity of its crude extract. ●: cell growth of BCNU 1204, ■: pH of culture medium, ◇: its inhibitory activity against S. aureus CCARM 3090 , △: its inhibitory activity against S. aureus CCARM 3091, ○: its inhibitory activity against S. aureus CCARM 3115, □: its inhibitory activity against S. aureus CCARM 3561.
Fig. 3. Gas chromatographic and gas chromatographic-mass spectrometric (GC-MS) analysis of purified phenazine-1-carboxylic acid. (A) Gas chromatogram of purified phenazine-1-carboxylic acid, (B) GC-MS chromatogram of purified phenazine-1-carboxylic acid.
Table 1. Antimicrobial activity of Pseudomonas aeruginosa BCNU 1204 against test bacteria
Table 2. Antimicrobial activity of HA, DCM and EA extract of Pseudomonas aeruginosa BCNU 1204 against test bac-teria
Table 3. Minimal inhibitory concentration of purified 5-2 com-pound
References
- Borrero, N. V., Bai, F., Perez, C., Duong, B. Q., Rocca, J. R., Jin, S. and Huigens III, R. W. 2014. Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis. Org. Biomol. Chem. 12, 881-886. https://doi.org/10.1039/C3OB42416B
- Brisbane, P. G. and Rovira, A. D. 1988. Mechanism of inhibition of Gaeumannomyces graminis var. tritici by Fluorescent Pseudomonads. Plant Pathol. 37, 104-111. https://doi.org/10.1111/j.1365-3059.1988.tb02201.x
- Cardozo, V. F., Oliveira, A. G., Nishio, E. K., Perugini, M. R., Andrade, C. G., Silveira, W. D., Duran, N., Andrade, G., Kobayashi, R. K. T. and Nakazato, G. 2013. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann. Clin. Microb. Anti. 12, 12. https://doi.org/10.1186/1476-0711-12-12
- Chebbi, A., Hentati, D., Zaghden, H., Baccar, N., Rezgui, F., Chalbi, M., Sayadi, S. and Chamkha, M. 2017. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int. Biodeter. Biodegr. 122, 128-140. https://doi.org/10.1016/j.ibiod.2017.05.006
- Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. H. M., Tichy, H. V., de Bruijin, F. J., Thomas-Oates, J. and Lugtenberg, B. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 11, 1069-1077. https://doi.org/10.1094/MPMI.1998.11.11.1069
- Harney, A. 2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today 5, 294-300. https://doi.org/10.1016/S1359-6446(00)01511-7
- Hasan, R., Acharjee, M. and Noor, R. 2016. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Tzu. Chi. Med. J. 28, 49-53. https://doi.org/10.1016/j.tcmj.2016.03.002
- Jain, R. and Pandey, A. 2016. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC 2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol. Res. 190, 63-71. https://doi.org/10.1016/j.micres.2016.04.017
- Leisinger, T. and Margraff, R. 1979. Sencondary metabolites of the fluorescent Pseudomonads. Microbiol. Rev. 43, 422-442. https://doi.org/10.1128/MMBR.43.3.422-442.1979
- Lee, A. J., Suh, H. S., Jeon, C. H. and Kim, S. G. 2011. Prevalence and clinical characteristics of mupirocin-resistant Staphylococcus aureus. Kor. J. Clin. Microbiol. 14, 18-23. https://doi.org/10.5145/KJCM.2011.14.1.18
- Mishra, J. and Arora, N. K. 2018. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl. Soil Ecol. 125, 35-45. https://doi.org/10.1016/j.apsoil.2017.12.004
- Murray P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C. and Yolke, R. H. 1999. Manual of Clinical Microbiology, pp. 1527-1539, 7th ed., ASM: Washington, DC, USA.
- Shoji, J., Hinoo, H., Kato, T., Hattori, T., Hirooka, K., Tawara, K., Shiratori, O. and Terui, Y. 1989. Isolation of cepafungins I, II and III from Pseudomonas species. J. Antibiot. 23, 783-787.
- Thomashow, L. S. and Weller, D. M. 1988. Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170, 3499-3508. https://doi.org/10.1128/jb.170.8.3499-3508.1988
- Saito, N. and Nei, M. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79, 426-434.
- Shanmugaiah, V., Mathivanan, N. and Varghese, B. 2009. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J. Appl. Microbiol. 108, 703-711. https://doi.org/10.1111/j.1365-2672.2009.04466.x
- Sutter, V. L., Kwok, Y. Y. and Finegold, S. M. 1973. Susceptibility of Bacteroides fragilis to six antibiotics determined by standardized antimicrobial disc susceptibility testing. Antimicrob. Agents Chemother. 3, 188-193. https://doi.org/10.1128/AAC.3.2.188
- Upadhyay, A. and Srivastava, S. 2011. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol. Res. 166, 323-335. https://doi.org/10.1016/j.micres.2010.06.001