DOI QR코드

DOI QR Code

Production of Poly(3-hydroxybutyrate) Using Waste Frying Oil

Waste frying oil를 사용한 Poly(3-Hydroxybutyrate) 생합성

  • Kim, Tae-Gyeong (Department of Biological Sciences, Andong National University) ;
  • Lee, Woosung (Department of Biological Sciences, Andong National University) ;
  • Gang, Seongho (Department of Biological Sciences, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University) ;
  • Chung, Chung-Wook (Department of Biological Sciences, Andong National University)
  • 김태경 (국립안동대학교 생명과학과) ;
  • 강성호 (국립안동대학교 생명과학과) ;
  • 이우성 (국립안동대학교 생명과학과) ;
  • 김종식 (국립안동대학교 생명과학과) ;
  • 정정욱 (국립안동대학교 생명과학과)
  • Received : 2018.10.19
  • Accepted : 2019.01.11
  • Published : 2019.01.30

Abstract

In this study, the optimal growth and poly(3-hydroxybutyrate) (PHB) biosynthesis of Pseudomonas sp. EML2 were established using waste frying oil (WFO) as a cheap carbon source. The fatty acid composition of WFO and fresh frying oil (FFO) were analyzed by gas chromatography. The unsaturated and saturated fatty acid contents of the FFO were 82.6% and 14.9%, respectively. These contents changed in the WFO. The compositional change in the unsaturated fatty acid content in the WFO was due to a change in its chemical and physical properties resulting from heating, an oxidation reaction, and hydrolysis. The maximum dry cell weight (DCW) and PHB yield (g/l) of the isolated strain Pseudomonas sp. EML2 were confirmed under the following culture conditions: 30 g/l of WFO, 0.5 gl of $NH_4Cl$, pH 7, and $20^{\circ}C$. Based on this, the growth and PHB yield of Pseudomonas sp. EML2 were confirmed by 3 l jar fermentation. After the cells were cultured in 30 g/l of WFO for 96 h, the DCW, PHB content, and PHB yield of Pseudomonas sp. EML2 were 3.6 g/l, 73 wt%, and 2.6 g/l, respectively. Similar results were obtained using 30 g/l of FFO as a carbon source control. Using the FFO, the DCW, PHB content, and PHB yield were 3.4 g/l, 70 wt%, and 2.4 g/l, respectively. Pseudomonas sp. EML2 and WFO may be a new candidate and substrate, respectively, for industrial production of PHB.

본 연구에서는 생분해성 고분자인 poly(3-hydroxbutyrate) (PHB)의 생산 비용 절감을 위해, 탄소원으로 폐식용유(waste frying oil, WFO)을 사용하여 분리 균주 Pseudomonas sp. EML2의 최적 생장 및 PHB 생합성 조건을 확립하였다. WFO와 새 식용류(fresh frying oil, FFO)의 지방산을 분석한 결과 FFO의 지방산 함량은 불포화지방산 82.6%, 포화지방산 14.9%를 차지하는 것으로 나타났으나 WFO의 경우 불포화지방산 56.3%와 포화지방산 33.5%로 FFO와 비교할 때 지방산 조성의 변화를 확인할 수 있었으며, 이러한 불포화지방산의 조성 변화는 가열, 산화반응 및 가수분해에 의한 화학적, 물리적 특성의 변화 때문인 것으로 사료된다. 분리 균주 Pseudomonas sp. EML2의 최대 건조세포중량과 PHB 생합성량(g/l)을 확인하기 위해 플라스크를 이용하여 탄소원 농도, 질소원 종류 및 배양 pH와 온도 및 시간을 확립하였다. 그 결과 30 g/l의 WFO과 0.5 g/l의 $NH_4Cl$를 질소원으로 사용하여 pH 7 및 $20^{\circ}C$의 배양 조건에서 96시간 배양 시 최적의 건조세포중량과 PHB 생합성량을 확인하였다. 이 결과를 바탕으로 3 l jar fermenter를 이용하여 Pseudomonas sp. EML2의 생장 및 PHB 수율을 확인하였다. 그 결과 30 g/l의 WFO를 단일 탄소원으로 사용하여 96시간 배양 시 3.6 g/l의 건조세포중량을 얻었으며 73.0 wt%의 PHB 축적률을 확인하였다. 이 경우 PHB 생합성량 2.6 g/l로 나타났다. FFO를 대조군으로 사용하여 대량배양 한 결과 WFO를 사용한 경우와 비슷한 건조세포중량(3.4 g/l), PHB 축적률(70.0 wt%), 그리고 PHB 생합성량(2.4 g/l)을 확인하였다. 본 연구에서 분리한 Pseudomonas sp. EML2는 WFO를 효과적으로 이용하여 PHB를 생합성 하였으며 이 균주와 WFO는 PHB의 산업적 생산을 위한 새로운 생산 후보자 및 탄소원으로서 이용될 수 있음을 확인하였다.

Keywords

SMGHBM_2019_v29n1_76_f0001.png 이미지

Fig. 1. GC and GC/MS analysis of PHAs produced from Pseudomonas sp. EML2. Strain was cultivated in MS medium with 2% WFO for 48 hr at 30℃. After PHAs are extracted with chloroform, (A) GC and (B) GC/MS analysis were performed.

SMGHBM_2019_v29n1_76_f0002.png 이미지

Fig. 2. Confirming optimum growth conditions of Pseudomonas sp. EML2 at MS medium with 2% WFO as a sole carbon source. (A) Time, (B) pH value, (C) Temperature, (D) Different nitrogen sources, (E) WFO concentration.

SMGHBM_2019_v29n1_76_f0003.png 이미지

Fig. 3. Production of PHAs by Pseudomonas sp. EML2 at batch fermentation with 3% WFO and FFO. The graph shows time courses of DCW, PHA yield and residual oil when batch fermentation with (A) WFO and (B) FFO as a sole carbon source, respectively.

Table 1. PHA production of soil bacteria in MS medium contain-ing 2% of WFO as the sole carbon source

SMGHBM_2019_v29n1_76_t0001.png 이미지

Table 2. Identification of isolated Pseudomonas sp. EML2 strains by 16S rRNA gene

SMGHBM_2019_v29n1_76_t0002.png 이미지

Table 3. Fatty acid composition of WFO and FFO

SMGHBM_2019_v29n1_76_t0003.png 이미지

Table 4. The comparison of microbial production of PHA from oil sources reported in the literature with the present work

SMGHBM_2019_v29n1_76_t0004.png 이미지

References

  1. Akiyama, M., Taima, Y. and Doi, Y. 1992. Production of poly (3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl. Microbiol. Biotechnol. 37, 698-701. https://doi.org/10.1007/BF00174830
  2. Akiyama, M., Tsuge, T. and Doi, Y. 2003. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 80, 183-194. https://doi.org/10.1016/S0141-3910(02)00400-7
  3. Ayub, N. D., Pettinari, M. J., Mendez, B. S. and Lopez, N. I. 2007. The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58, 240-248. https://doi.org/10.1016/j.plasmid.2007.05.003
  4. Ayub, N. D., Tribelli, P. M. and Lopez, N. I. 2009. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13, 59-66. https://doi.org/10.1007/s00792-008-0197-z
  5. Bugnicourt, E., Cinelli, P., Lazzeri, A. and Alvarez, V. A. 2014. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym. Lett. 8, 791-808. https://doi.org/10.3144/expresspolymlett.2014.82
  6. Chung, J., Lee, J. and Choe, E. 2004. Oxidative stability of soybean and sesame oil mixture during frying of flour dough. J. Food Sci. 69, 574-578. https://doi.org/10.1111/j.1365-2621.2004.tb13652.x
  7. Gamal, R. F., Abdelhady, H. M., Khodair, T. A., El-Tayeb, T. S., Hassan, E. A. and Aboutaleb, K. A. 2013. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. BJM. 44, 539-549.
  8. Harding, K., Dennis, J., Von Blottnitz, H. and Harrison, S. 2007. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-${\beta}$-hydroxybutyric acid using life cycle analysis. J. Biotechnol. 130, 57-66. https://doi.org/10.1016/j.jbiotec.2007.02.012
  9. Kim, B. S. 2000. Production of poly (3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb. Technol. 27, 774-777. https://doi.org/10.1016/S0141-0229(00)00299-4
  10. Kim, S. H., Lee, Y. D. and Kim, M. S. 2015. Generation and Treatment Problem of Used Cooking Oils and Search for Resourcelization-in-local. JRS. 23, 77-95.
  11. Kim, T., Kim, D. and Chung, Y. 2015. Environmental impact evaluation of the waste cooking oil recycling products. JFMSE 27, 516-525. https://doi.org/10.13000/JFMSE.2015.27.2.516
  12. Kim, Y. B. and Lenz, R. W. 2001. Polyesters from microorganisms, pp. 51-79, In Anonymous Biopolyesters, Springer.
  13. Lee, W., Loo, C., Nomura, C. T. and Sudesh, K. 2008. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 99, 6844-6851. https://doi.org/10.1016/j.biortech.2008.01.051
  14. Lu, J., Tappel, R. C. and Nomura, C. T. 2009. Mini-review: biosynthesis of poly (hydroxyalkanoates). J. Macromol. Sci.(R), Part C: Polym. Rev. 49, 226-248.
  15. Min, K. I., Park, C. K., Kim, J. K. and Na, B. K. 2016. Study on potential feedstock amount analysis of biodiesel in Korea. Trans. Kor. Hydrogen New Energy Soc. 27, 447-461. https://doi.org/10.7316/KHNES.2016.27.4.447
  16. Nitschke, M., Costa, S. G. and Contiero, J. 2011. Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem. 46, 621-630. https://doi.org/10.1016/j.procbio.2010.12.012
  17. Poli, A., Donato, P. Di., Abbamondi, G. R. and Nicolaus, B. 2011. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011, 693253.
  18. Pouton, C. W. and Akhtar, S. 1996. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv. Drug Deliv. Rev. 18, 133-162. https://doi.org/10.1016/0169-409X(95)00092-L
  19. Raza, Z. A., Abid, S. and Banat, I. M. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 126, 45-56. https://doi.org/10.1016/j.ibiod.2017.10.001
  20. Salehizadeh, H. and Van Loosdrecht, M. 2004. Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261-279. https://doi.org/10.1016/j.biotechadv.2003.09.003
  21. Wang, F. and Lee, S. Y. 1997. Poly(3-Hydroxybutyrate) Production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl. Environ. Microbiol. 63, 3703-3706. https://doi.org/10.1128/AEM.63.9.3703-3706.1997
  22. Yamane, T., Chen, X. and Ueda, S. 1996. Growth-associated production of Poly(3-Hydroxyvalerate) from n-Pentanol by a methylotrophic bacterium, Paracoccus denitrificans. Appl. Environ. Microbiol. 62, 380-384. https://doi.org/10.1128/AEM.62.2.380-384.1996