DOI QR코드

DOI QR Code

갯질경이 용매분획물의 3T3-L1전지방세포에서의 지방생성억제 효과

Antiadipogenic Activity of Solvent-partitioned Fractions from Limonium tetragonum in 3T3-L1 Preadipocytes

  • 권명숙 (신라대학교 의생명과학대학 식품영양학과) ;
  • 김정애 (신라대학교 의생명과학대학 식품영양학과) ;
  • 오정환 (신라대학교 의생명과학대학 식품영양학과) ;
  • 파티 카라데니즈 (신라대학교 해양식의약소재융합기술연구소) ;
  • 이정임 (신라대학교 해양식의약소재융합기술연구소) ;
  • 서영완 (한국해양대학교 해양과학기술대학 해양생명과학부) ;
  • 공창숙 (신라대학교 의생명과학대학 식품영양학과)
  • Kwon, Myeong Sook (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University) ;
  • Kim, Jung-Ae (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University) ;
  • Oh, Jung Hwan (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University) ;
  • Karadeniz, Fatih (Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University) ;
  • Lee, Jung Im (Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University) ;
  • Seo, Youngwan (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Kong, Chang-Suk (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University)
  • 투고 : 2018.08.14
  • 심사 : 2018.11.14
  • 발행 : 2019.01.30

초록

갯질경이(Limonium tetragonum)는 질경이과에 속하는 여러해살이 풀로 습지에 자생하는 염생식물의 일종이며, 항산화, 항종양 및 간보호 효능이 있는 것으로 알려져 있다. 본 연구에서는 갯질경이 추출물로부터 용매 극성에 따라 분획한 분획물($H_2O$, n-BuOH, 85% aq. MeOH 및 n-Hexane)을 이용하여 지방세포내 중성지방 생성 및 지방세포 분화조절 인자 발현에 미치는 영향을 검토하였다. 마우스 유래 지방전구세포3T3-L1을 지방세포로 분화하여 Oil Red O염색법으로 지방 세포 분화정도를 확인한 결과, 갯질경이 분획물에 의해 지방세포의 형성이 농도의존적으로 억제되었다. 또한 지방생성조절에 관여하는 전사인자 $PPAR{\gamma}$, $C/EBP{\alpha}$ 및 SREBP-1c의 발현을 mRNA와 단백질 수준에서 확인한 결과 갯질경이 분획물 처리시 지방세포 분화 인자의 발현이 유의적으로 감소하였다. 지방세포 분화에 관여하는 것으로 알려진 MAPK 신호 전달 경로를 확인한 결과 갯질경이 분획물 처리군에서 p38, ERK 및 JNK의 인산화가 억제되었다. 용매 분획물중에서 $H_2O$ 및 n-Hexane 분획물이 가장 우수한 지방생성 억제활성을 나타내었는데 이는, 분획물 중 페놀 또는 지방 유도체에 의한 것으로 사료된다. 본 연구 결과로부터 갯질경이 분획물의 MAPK 신호전달 경로 억제를 통한 항비만 효과를 확인하였으며, 나아가 건강기능성 식품 소재로서의 개발 가능성이 기대된다.

Limonium tetragonum, an edible halophyte that grows on salt marshes in Korea, is thought to possess various health benefits (e.g., antioxidant, antitumor, and hepatoprotective). In the present study, different solvent partitioned subfractions, water ($H_2O$), buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and hexane (n-hexane), from crude extract of L. tetragonum were tested for their ability to prevent adipogenesis in differentiating 3T3-L1 preadipocytes. The treatment of differentiating 3T3-L1 preadipocytes with L. tetragonum subfractions (LTFs) resulted in suppressed adipogenesis and reduced expression of adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), CCAATT/enhancer-binding protein alpha ($C/EBP{\alpha}$), and sterol regulatory element-binding protein 1c (SREBP-1c) at both mRNA and protein levels. In addition, the LTF treatment notably decreased the levels of phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) pathway in association with $PPAR{\gamma}$-linked adipogenesis. Among all the tested LTFs, $H_2O$ and n-hexane were the most effective in lowering lipid accumulation and regulating the adipocyte differentiation via $PPAR{\gamma}$ pathway. Taken together, the results indicated that the $H_2O$ and n-hexane LTFs contain bioactive compounds that may exhibit significant antiadipogenesis activity by downregulation of the $PPAR{\gamma}$ pathway and inactivation of the MAPK signal pathway in 3T3-L1 preadipocytes.

키워드

SMGHBM_2019_v29n1_60_f0001.png 이미지

Fig. 1. Cytotoxic effect of LTFs on 3T3-L1 cells. The data represent the mean ± SD of three separate experiments.

SMGHBM_2019_v29n1_60_f0002.png 이미지

Fig. 2. Effect of LTFs on the lipid accumulation of differentiated 3T3-L1 adipocytes depicted by Oil red O staining and the quantification of the stain bound to lipid droplets. The data represent the mean ± SD of three separate experiments.

SMGHBM_2019_v29n1_60_f0003.png 이미지

Fig. 3. mRNA expression levels of key adipogenic factors from PPARγ in differentiated mature 3T3-L1 adipocytes following treatment of LTFs (H2O; n-BuOH; 85% aq. MeOH; n-Hexane) assayed by RT-PCR. β-actin was used as a housekeeping protein control. The data represent the mean ± SD of three separate experiments. a-eMeans with the different letters are significantly different by Duncan’s multiple range test. (significant as compared to control. *p<0.05).

SMGHBM_2019_v29n1_60_f0004.png 이미지

Fig. 4. Effect of LTFs (H2O; n-BuOH; 85% aq. MeOH; n-Hexane) on the protein levels of the PPARγ pathway transcription actors analyzed by Western blotting. The protein levels were showed as protein bands and effects were observed as the band density. β-actin was used as a housekeeping protein control. Data presented as percentage of untreated differentiated control cell group normalized against β-actin.

SMGHBM_2019_v29n1_60_f0005.png 이미지

Fig. 5. Effect of LTFs (H2O; n-BuOH; 85% aq. MeOH; n-Hexane) on the protein levels of the phosphorylated (p-) MAPK pathway proteins p38, ERK and JNK analyzed by Western blotting. The protein levels were showed as protein bands and effects were observed as the band density. β-actin was used as a housekeeping protein control. Data presented as percentage of untreated differentiated control cell group normalized against β-actin.

참고문헌

  1. Anderson, A. S. and Caswell, S. 2009. Obesity management - an opportunity for cancer prevention. Surgeon 7, 282-285. https://doi.org/10.1016/S1479-666X(09)80005-X
  2. Bost, F., Aouadi, M., Caron, L. and Binetruy, B. 2005. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87, 51-56. https://doi.org/10.1016/j.biochi.2004.10.018
  3. Burns, K. A. and Vanden Heuvel, J. P. 2007. Modulation of PPAR activity via phosphorylation. Biochim. Biophys. Acta 1771, 952-960. https://doi.org/10.1016/j.bbalip.2007.04.018
  4. Choi, J. H., Banks, A. S., Estall, J. L., Kajimura, S., Bostrom, P., Laznik, D., Ruas, J. L., Chalmers, M. J., Kamenecka, T. M., Bluher, M., Griffin, P. R. and Spiegelman, B. M. 2010. Obesity-linked phosphorylation of $PPAR{\gamma}$ by cdk5 is a direct target of the anti-diabetic $PPAR{\gamma}$ ligands. Nature 466, 451-456. https://doi.org/10.1038/nature09291
  5. Dagon, Y., Avraham, Y. and Berry, E. 2006. M. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by $eIF2{\alpha}$ in adipocytes. Biochem. Biophys. Res. Commun. 340, 43-47. https://doi.org/10.1016/j.bbrc.2005.11.159
  6. de Ferranti, S. and Mozaffarian, D. 2008. The perfect storm: Obesity, adipocyte dysfunction, and metabolic consequences. Clin. Chem. 54, 945-955. https://doi.org/10.1373/clinchem.2007.100156
  7. Fajas, L., Fruchart, J. C. and Auwerx, J. 1998. Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10, 165-173. https://doi.org/10.1016/S0955-0674(98)80138-5
  8. Hajer, G. R., van Haeften, T. W. and Visseren, F. L. J. 2008. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 29, 2959-2971. https://doi.org/10.1093/eurheartj/ehn387
  9. Hsu, C. L. and Yen, G. C. 2007. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 55, 8404-8410. https://doi.org/10.1021/jf071695r
  10. Jeong, H., Kim, H., Ju, E., Kong, C. S. and Seo, Y. 2016. Antioxidant effect of the halophyte Atriplex gmelinii. KSBB J. 31, 200-207. https://doi.org/10.7841/ksbbj.2016.31.4.200
  11. Kim, I. S., Yang, M., Lee, O. H. and Kang, S. N. 2011. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT Food Sci. Technol. 44, 1328-1332. https://doi.org/10.1016/j.lwt.2010.12.003
  12. Lavie, C. J., Milani, R. V. and Ventura, H. O. 2009. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. College Cardiol. 53, 1925-1932. https://doi.org/10.1016/j.jacc.2008.12.068
  13. Lee, J. I., Kong, C. S., Jung, M. E., Hong, J. W., Noh, I. and Seo, Y. 2011. Peroxynitrite-scavenging activity of the halophyte Limonium tetragonum. Ocean Polar Res. 33, 185-191. https://doi.org/10.4217/OPR.2011.33.2.185
  14. Malnick, S. D. and Knobler, H. 2006. The medical complications of obesity. QJM. 99, 565-579. https://doi.org/10.1093/qjmed/hcl085
  15. Marti, A., Martinez-Gonzalez, M. A. and Martinez, J. A. 2008. Interaction between genes and lifestyle factors on obesity. Proc. Nutr. Soc. 67, 1-8. https://doi.org/10.1017/S002966510800596X
  16. Musa, A. M., Ibrahim, M. A., Aliyu, A. B., Abdullahi, M. S., Tajuddeen, N., Ibrahim, H. and Oyewale, A. O. 2015. Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae). J. Intercult. Ethnopharmacol. 4, 129-133. https://doi.org/10.5455/jice.20150106124652
  17. Ordovas, J. M. and Shen, J. 2008. Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. J. Periodontol. 79, 1508-1513. https://doi.org/10.1902/jop.2008.080232
  18. Otto, T. C. and Lane, M. D. 2005. Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40, 229-242. https://doi.org/10.1080/10409230591008189
  19. Pariza, M. W., Park, Y. and Cook, M. E. 2001. The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res. 40, 283-298. https://doi.org/10.1016/S0163-7827(01)00008-X
  20. Rosen, E. D. and MacDougald, O. A. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885-896. https://doi.org/10.1038/nrm2066
  21. Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M. and Yoga Latha, L. 2011. Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr. J. Tradit. Complement. Altern. Med. 8, 1-10.
  22. Sun, K., Kusminski, C. M. and Scherer, P. E. 2011. Adipose tissue remodeling and obesity. J. Clin. Investig. 121, 2094-2101. https://doi.org/10.1172/JCI45887
  23. Uribe, E., Delgadillo, A., Giovagnoli-Vicuna, C., Quispe-Fuentes, I. and Zura-Bravo, L. 2015. Extraction techniques for bioactive compounds and antioxidant capacity determination of Chilean papaya (Vasconcellea pubescens) fruit. J. Chem. 2015, 47532.
  24. Wofford, M. R. and Hall, J. E. 2004. Pathophysiology and treatment of obesity hypertension. Curr. Pharm. Des. 10, 3621-3637. https://doi.org/10.2174/1381612043382855
  25. Yang, M. H., Kim, N. H., Heo, J. D., Sung, S. H. and Jeong, E. J. 2014. Hepatoprotective effects of Limonium tetragonum, edible medicinal halophyte growing near seashores. Pharmacogn. Mag. 10, 563-568. https://doi.org/10.4103/0973-1296.139783