DOI QR코드

DOI QR Code

Protective effects of Sasa quelpaertensis Leaf Residue Extract against Potassium Oxonate-induced Hyperuricemia in Mice

생쥐에서 제주조릿대 잎 잔사 추출물의 고요산 혈증 저감 효과

  • Jang, Mi Gyeong (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Song, Hana (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Lee, Ju Yeop (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Ko, Hee Chul (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Hur, Sung-Pyo (Korea Institute of Ocean Science & Technology) ;
  • Kim, Se Jae (Jeju Sasa Industry Development Agency, Jeju National University)
  • 장미경 (제주대학교 제주조릿대 RIS사업단) ;
  • 송하나 (제주대학교 제주조릿대 RIS사업단) ;
  • 이주엽 (제주대학교 제주조릿대 RIS사업단) ;
  • 고희철 (제주대학교 제주조릿대 RIS사업단) ;
  • 허성표 (한국해양과학기술원) ;
  • 김세재 (제주대학교 제주조릿대 RIS사업단)
  • Received : 2018.10.15
  • Accepted : 2018.10.30
  • Published : 2019.01.30

Abstract

Leaves of Sasa quelpaertensis Nakai are used in folk medicine for their anti-inflammatory, antipyretic, and diuretic properties. To ensure efficient utilization of S. quelpaertensis leaf, we previously reported a preparation method for phytochemical-rich extract (PRE) using the leaf residue, which was produced after hot water extraction. This study was undertaken to evaluate the hypouricemic potential of S. quelpaertensis leaf PRE in potassium oxonate (PO)-induced hyperuricemic mice. The administration of PRE significantly reduced serum uric acid (UA), blood urea nitrogen (BUN), and serum creatinine levels and increased urine UA and creatinine levels in the PO-induced hyperuricemic mice. It also reduced liver UA levels and xanthine oxidase (XA) activity. A histological analysis revealed that PRE administration protected against PO-induced liver damage, pointing to anti-inflammatory and cytoprotective effects in PO-induced hyperuricemic mice. We analyzed the transcriptome response to PRE administration in PO-induced hyperuricemic mice using RNA sequencing (RNA-Seq) in kidney tissues. The administration of PRE mainly enriched genes involved in mediating immune and inflammatory responses and the metabolic pathway. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the metabolic pathway, purine metabolism, and antibody biosynthesis were the major pathways altered in the PRE and PO groups. These results suggest a potential role for PRE in the prevention and treatment of hyperuricemia with inflammation.

조릿대 잎은 항염, 해열, 이뇨작용 등의 약리효과를 가지고 있어 예로부터 전통의약에서 사용되어 왔다. 본 연구팀은 열수 추출한 후 남는 잔사로부터 식물화합물을 다량으로 함유한 잔사 추출물(PRE)을 제조하는 방법을 보고 바 있다. 본 연구는PRE의 고요산 혈증 저감소재로서 활용 가능성을 평가하기 위하여 수행하였다. Potassium oxonate(PO)로 유도한 고요산 혈증 생쥐 모델에서 PRE는 혈액 내의 요산, 요소 질소, 크레아틴 농도는 감소시켰고, 오줌 내의 요산과 크레아틴 농도는 증가하였다. 또한, PRE 투여한 고용산 혈증 생쥐에서 간 내 요산 농도와 xanthine oxidase 활성이 대조군에 비해 감소하였고, PRE는 PO에 의해 유도된 간 조직의 상해를 보호하였다. 이 결과는 PO로 유도된 고요산 혈증 생쥐에서 PRE는 항염증 및 세포보호 작용에 기인하는 것으로 판단된다. 부가적으로 PRE에 의한 신장조직에서 transcriptome의 반응 변화를 RNA 서열분석법으로 분석하였다. PRE는 주로 면역반응, 염증반응 및 대사과정에 관여하는 유전자의 발현에 영향을 미치는 것으로 나타났다. 본 연구 결과는 염증을 동반하는 고요산 혈증을 개선하는 소재로서의 PRE의 활용 가능성을 제시해 준다.

Keywords

SMGHBM_2019_v29n1_37_f0001.png 이미지

Fig. 1. Administration of Sasa quelpaertensis leaf phytochemical-rich extract (PRE) modulated uric acid (UA) levels in potassium oxonate (PO)-induced hyperuricemic mice.

SMGHBM_2019_v29n1_37_f0002.png 이미지

Fig. 2. PRE administration modulated blood urea nitrogen (BUN) and creatinine levels in PO-induced hyperuricemic mice.

SMGHBM_2019_v29n1_37_f0003.png 이미지

Fig. 3. PRE administration restored PO-induced liver damage.

Table 1. Gene ontology (GO) analysis of differentially expressed genes (DEGs) in PRE versus PO groups

SMGHBM_2019_v29n1_37_t0001.png 이미지

Table 2. Pathway analysis of differentially expressed genes (DEGs) in PRE versus PO groups

SMGHBM_2019_v29n1_37_t0002.png 이미지

References

  1. Chen, G., Tan, M. L., Li, K. K., Leung, P. C. and Ko, C. H. 2015. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J. Ethnopharmacol. 175, 14-20. https://doi.org/10.1016/j.jep.2015.08.043
  2. Duke, E. J., Joyce, P. and Ryan, J. P. 1973. Characterization of alternative molecular forms of xanthine oxidase in the mouse. Biochem. J. 131, 187-190. https://doi.org/10.1042/bj1310187
  3. Edwards, N. L. 2009. The role of hyperuricemia in vascular disorders. Curr. Opin. Rheumatol. 21, 132-137. https://doi.org/10.1097/BOR.0b013e3283257b96
  4. Feig, D. I., Kang, D. H. and Johnson, R. J. 2008. Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811-1821. https://doi.org/10.1056/NEJMra0800885
  5. Freig, D. I., Soletsky, B. and Johnson, R. J. 2008. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: A randomized trial. JAMA. 300, 924-932. https://doi.org/10.1001/jama.300.8.924
  6. Fan, C. Y., Wang, M. X., Ge, C. X., Wang, X., Li, J. M. and Kong, L. D. 2014. Betaine supplementation protects against high-fructose-induced renal injury in rats. J. Nutr. Biochem. 25, 353-362. https://doi.org/10.1016/j.jnutbio.2013.11.010
  7. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Homik, K., Hothorn, T., Buber, W., Lacus, S., Lrizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. and Zhang, J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80. https://doi.org/10.1186/gb-2004-5-10-r80
  8. George, J. and Struthers, A. D. 2009. Roles of urate, xanthine oxidase and effects of allopurinol in vascular oxidative stress. Vasc. Health. Risk Manag. 5, 265-272. https://doi.org/10.2147/VHRM.S4265
  9. Hidetomo, K., Satomi, K., Rie, A., kouki, S., Atsuko, O., Tadashi, T. and Katsuyoshi, S. 2017. Rosehip inhibits xanthine oxidase activity and reduces serum urate levels in a mouse model of hyperuricemia. Biomed. Rep. 6, 539-544 https://doi.org/10.3892/br.2017.888
  10. Hwang, J. H., Choi, S. Y., Ko, H. C., Jang, M. G., Jin, Y. J., Kang, S. I., Park, J. G., Chung, W. S. and Kim, S. J. 2007. Anti-inflammatory effect of the hot water extract from Sasa quelpaedensis leaves. Food Sci. Biotech. 16, 728-733.
  11. Kang, S. I., Shin, H. S., Kim, H. M., Hong, Y. S., Yoon, S. A., Kang, S. W., Kim, J. H., Ko, H. C. and Kim, S. J. 2012. Anti-obesity properties of a Sasa quelpaertensis extract in high-fat diet-induced obese mice. Biosci. Biotechnol. Biochem. 76, 755-761. https://doi.org/10.1271/bbb.110868
  12. Kikuchi, H., Kogure, S., Apai, R., Saino, K., Ohkubo, A., Tsuda, T. and Sunaga, K. 2017. Rosehip inhibits xanthine oxidase activity and reduces serum urate levels in a mouse model of hyperuricemia. Biomed. Rep. 6, 539-544. https://doi.org/10.3892/br.2017.888
  13. Kim, J. H., Kang, S. I., Shin, H. S., Yoon, S. A., Kang, S. W., Ko, H. C. and Kim, S. J. 2013. Sasa quelpaertensis and p-coumaric acid attenuate oleic acid-induced lipid accululation in HepG2 cells. Biosci. Biotechnol. Biochem. 77, 1595-1598. https://doi.org/10.1271/bbb.130167
  14. Kim, K. M., Kim, Y. S., Lim, J. Y., Min, S. J., Shin, J. H., Ko, H. C., Kim, S. J., Lim, Y. and Kim, Y. 2014. Sasa quelpaertensis leaf extract suppresses dextran sulfate sodium- induced colitis in mice by inhibiting the proinflammatory mediators and mitogen-activated protein kinase phosphorylation. Nutr. Res. 34, 894-905. https://doi.org/10.1016/j.nutres.2014.09.002
  15. Langmead, B. and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Mathods 9, 357-359.
  16. Lee, J. Y., Ko, H. C., Jang, M. G. and Kim, S. J. 2016. Preparation and characterization of phytochemical-rich extract from Sasa quelpaertensis leaf. J. Life Sci. 26, 1330-1335. https://doi.org/10.5352/JLS.2016.26.11.1330
  17. Li, J. M., Zhang, X., Wang, X., Xie, Y. C. and Kong, L. D. 2011. Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. Eur. J. Pharmacol. 666, 196-204. https://doi.org/10.1016/j.ejphar.2011.05.021
  18. Lin, K. C., Lin, H. Y. and Chou, P. 2000. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J. Rheumatol. 27, 1501-1505.
  19. Okabe, S., Takeuchi, K., Takagi, K. and Shibata, M. 1975. Stimulatory effect of the water extract of bamboo grass (Folin solution) on gastric acid secretion in pylorus-ligated rats. Jap. J. Pharm. 25, 608-609. https://doi.org/10.1254/jjp.25.608
  20. Pacher, P., Nivorozhkin, A. and Szabo, C. 2006. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 58, 87-114. https://doi.org/10.1124/pr.58.1.6
  21. So, A. and Thorens, B. 2010. Uric acid transport and disease. J. Clini. Investig. 120, 1791-1799. https://doi.org/10.1172/JCI42344
  22. Quinlan, A. R. and Hall, I. M. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842. https://doi.org/10.1093/bioinformatics/btq033
  23. Ren, M., Reilly, R. T. and Sacchi, N. 2001. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis. Anticancer Res. 24, 2879-2884.
  24. Tubaro, E., Banci, F., Lotti, B. and Croce, C. 1976. Xanthine oxidase activation in animal liver during infectious processes. Arzneimittel-Forschung 26, 2185-2186.
  25. Wang, M. X., Liu, Y. L., Yang, Y., Zhang, D. M. and Kong, L. D. 2015. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur. J. Pharm. 747, 59-70. https://doi.org/10.1016/j.ejphar.2014.11.035