Fig. 1. Fermentation process of Dendropanax morbifera (A) leave/branches extracts, (B) sap.
Fig. 2. Growth curves of Lactobacillus plantarum ilchiwhangchil 1785 and Lactobacillus plantarum ilchiwhangchil 2020.
Fig. 3. The changes of pH and the viable cells during of fermentation process. (A) pH changes during fermentation of Dendropanax morbifera leave/branches extracts with Lactobacillus plantarum ilchiwhangchil 1785, and (B) Lactobacillus plantarum ilchiwhangchil 2020, (C) the number of viable cells changes during fermentation of Dendropanax morbifera leave/branches extracts with Lactobacillus plantarum ilchiwhangchil 1785, and (D) Lactobacillus plantarum ilchiwhangchil 2020, (E) the number of viable cells changes during fermentation of Dendropanax morbifera sap with Lactobacillus plantarum ilchiwhangchil 1785, and (F) Lactobacillus plantarum ilchiwhangchil 2020.
Fig. 4. Antimicrobial activities of fermented Dendropanax morbifera leave/branches extracts, using (A) Lactobacillus plantarum ilchiwhangchil 1785 (1785) against Escherichia coli, (B) Lactobacillus plantarum ilchiwhangchil 1785 (1785) against Pseudomonas aeruginosa, and (C) Lactobacillus plantarum ilchiwhangchil 2020 (2020) against Staphylococcus aureus. (1) control (distilled water), (2) 1 mg, (3) 2 mg, (4) 3 mg of Dendropanax morbifera extracts, respectively, (5) chloramphenicol (10 μg).
Table 1. Inhibition zones of fermented Dendropanax morbifera leave/branches extracts, and sap using Lactobacillus plantarum ilchi-whangchil 1785 (1785) and Lactobacillus plantarum ilchiwhangchil 2020 (2020) against Escherichia coli
Table 2. Inhibition zones of fermented Dendropanax morbifera leave/branches extracts, and sap using Lactobacillus plantarum ilchi-whangchil 1785 (1785) and Lactobacillus plantarum ilchiwhangchil 2020 (2020) against Staphylococcus aureus
Table 3. Inhibition zones of fermented Dendropanax morbifera leave/branches extracts, and sap using Lactobacillus plantarum ilchi-whangchil 1785 (1785) and Lactobacillus plantarum ilchiwhangchil 2020 (2020) against Pseudomonas aeruginosa
Table 4. Minimum inhibitory concentration of fermented Dendropanax morbifera leave/branches extracts, and sap using Lactobacillus plantarum ilchiwhangchil 1785 (1785) and Lactobacillus plantarum ilchiwhangchil 2020 (2020)
References
- Bernart, M. W., Cardellina, J. H., Balaschak, M. S., Alexander, M. R., Shoemaker, R. H. and Boyd, M. R. 1996. Cytotoxic falcarinol oxylipins from Dendropanax arboreus. J. Nat. Prod. 59, 748-753. https://doi.org/10.1021/np960224o
- Chung, I. M., Seo, S. H., Kang, E. Y., Park, S. D., Park, W. H. and Moon, H. I. 2009. Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochem. Syst. Ecol. 37, 470-473. https://doi.org/10.1016/j.bse.2009.06.004
- Cross, M. L., Stevenson, L. M. and Gill, H. S. 2001. Anti-allergy properties of fermented foods: an important immunoregularoty mechanism of lactic acid bacteria? Int. Immunopharmacol. 1, 891-901. https://doi.org/10.1016/S1567-5769(01)00025-X
- Fu, W. and Mathews, A. P. 1999. Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 3, 163-170. https://doi.org/10.1016/S1369-703X(99)00014-5
- Hong, W. S. and Yoon, S. 1989. The effects of low temperature heating and mustard oil on the Kimchi fermentation. Kor. J. Food Sci. Technol. 21, 331-337.
- Huhtanen, C. N. 1980. Inhibition of Clostridium botulinum by spice extracts and aliphatic alcohols. J. Food Sci. 43, 195-196.
- Hyun, T. K., Kim, M. O., Lee, H., Kim, Y., Kim, E. and Kim, J. S. 2013. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Leveille. Food Chem. 141, 1947-1955. https://doi.org/10.1016/j.foodchem.2013.05.021
- Im, K. J., Jang, S. B. and Yoo, D. Y. 2015. Anti-cancer effects of Dendropanax morbifera extract in MCF-7 and MDA-MB-231 cells. J. Kor. Obstet. Gynecol. 28, 26-39. https://doi.org/10.15204/jkobgy.2015.28.2.026
- Jeong, B. S., Jo, J. S., Pyo, B. S. and Hwang, B. 1995. Studies on the distribution of Dendropanax morbifera and component analysis of the golden lacquer. Kor. J. Biotechnol. Bioeng. 10, 393-400.
- Jung, H. J., Park, S. H., Seo, H. A., Kim, Y. J., Cho, J. I., Park, S. S., Song, D. S. and Kim, K. S. 2005. Differentiation of four major gram-negative foodborne pathogenic bacterial genera by using ERIC-PCR genomic fingerprinting. Kor. J. Food Sci. Technol. 37, 1005-1011.
- Kang, D. H. and Kim, H. S. 2011. Functionality analysis of Korean medicine fermented by Lactobacillus strains. Kor. J. Microbiol. Biotechnol. 39, 259-265.
- Karovicova, J. and Kohajdova, Z. 2003. Lactic acid fermented vegetable juices. Hortic. Sci. 30, 152-158. https://doi.org/10.17221/3878-hortsci
- Koho, K. H. 1996. Antimicrobial effects of short-chain fatty acids against Saccaromyces cerevisiae. Foods Biotechnol. 5, 42-47.
- Kolodziejczyk, K., Sojka, M., Abadias, M., Vinas, I., Guyot, S. and Baron, A. 2013. Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind. Crop. Prod. 51, 279-288. https://doi.org/10.1016/j.indcrop.2013.09.030
- Lee, B. W. and Shin, D. H. 1991. Screening of natural antimicrobial plant extract on food spoilage microorganisms. Kor. J. Food Sci. Technol. 23, 200-204.
- Lee, S. H., Lee, H. S., Park, Y. S., Hwang, B., Kim, J. H. and Lee, H. Y. 2002. Screening of immune activation activities in the leaves of Dendropanax morbifera Lev. Kor. J. Med. Crop Sci. 10, 109-115.
- Li, X. Z., Livermore, D. M. and Nikaido, H. 1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents Chemother. 38, 1732-1741. https://doi.org/10.1128/AAC.38.8.1732
- Mo, J. H. and Oh, S. J. 2013. Tyrosinase inhibitory activity and melanin production inhibitory activity of the methanol extract and fractions from Dendropanax morbifera Lev. Kor. J. Aesthet. Cosmetol. 11, 275-280.
- Olsen, A., Halm, M. and Jakobsen, M. 1995. The antimicrobial activity of lactic acid bacteria from fermented maize (kenkey) and their interactions during fermentation. J. Appl. Bacteriol. 79, 506-512. https://doi.org/10.1111/j.1365-2672.1995.tb03170.x
- Perdigon, G., Fuller, R. and Raya, R. 2001. Lactic acid bacteria and their effect on the immune system. Curr. Issues Intest. Microbiol. 2, 27-42.
- Poole, K. 2001. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms, J. Mol. Microbiol. Biotechnol. 3, 255-264.
- Rafter, J. 2002. Lactic acid bacteria and cancer: mechanistic perspective. Brit. J. Nutr. 88, S89-S94. https://doi.org/10.1079/BJN2002633
- Rozes, N. and Peres, C. 1998. Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 49, 108-111. https://doi.org/10.1007/s002530051145
- Shin, D. C., Kim, G. C., Song, S. Y., Kim, H. J., Yang, J. C. and Kim, B. A. 2013. Antioxidant and antiaging activities of complex supercritical fluid extracts from Dendropanax morbifera, Corni fructus and Lycii fructus. Kor. J. Herbol. 28, 95-100.
- Song, J. H., Kang, H. B., Kim, J. H., Kwak, S. M., Sung, G. J., Park, S. H., Jeong, J. H., Kim, H. H., Lee, J. M., Jun, W. J., Kim, Y. J. and Choi, K. C. 2018. Antiobesity and cholesterol-lowering effects of Dendropanax morbifera water extracts in mouse 3T3-L1 cells. J. Med. Food 21, 793-800. https://doi.org/10.1089/jmf.2017.4154