DOI QR코드

DOI QR Code

The Effect of Exercise Intensity on Changes in Neuronal Nitric Oxide Synthase Expression in the Hippocampus and Cerebral Cortex of Obese Mice

고지방식이로 유도된 비만 마우스의 해마 및 대뇌피질에서 운동강도에 따른 nNOS 발현의 변화

  • 백경완 (부산대학교 스포츠과학부)
  • Received : 2018.09.19
  • Accepted : 2018.11.26
  • Published : 2019.01.30

Abstract

Recent studies reported that obesity upregulated the expression of neuronal nitric oxide synthase (nNOS) and regulated particular behavior patterns in animal models. They also reported that ameliorated the increase in nNOS expression and decreased depression and anxiolytic effects. Thus, exercise seems to be an effective strategy for improving brain function by downregulating nNOS. However, the immune response differs greatly, depending on the exercise intensity. The aim of the present study was to investigate differences in brain nNOS expression in obese C57BL/6 mice that performed exercise of different intensities. Obesity was induced in 6-wks-old mice (n=35) by feeding a 60%-fat diet for 6-wks. A control (CON) group (n=14) was fed a normal diet. At the end of the induction 6-wks period of obesity, seven animals in the CON group and obesity-induced group were sacrificed to confirm obesity induction (preliminary experiments and confirmation of visceral fat accumulation). The remaining animals were then used in an 8-wks exercise intervention. Other than the CON (n=7), the obesity-induced animals were divided into the following groups: high-fat diet (HFD, n=7), HFD-low intensity (HFD-LI, n=7, 12 m/min for 75 min), HFD-moderate intensity (HFD-MI, n=7, 15 m/min for 60 min), and HFD-high intensity (HFD-HI, n=7, 18 m/min for 50 min). The exercise was performed on an animal treadmill. The expression of the nNOS protein in the hippocampus was significantly higher in the HFD group as compared with that in the CON group (p<0.01). However, there was no difference in the hippocampal expression of the nNOS protein in the other exercise groups as compared with that in the CON group. In contrast, nNOS expression in the HFD-HI group was significantly lower than that in the HFD-LI group (p<0.05). The expression of phosphorylated Akt (pAkt) was significantly higher in all the exercise groups as compared with that in the CON and HFD groups. There was no difference in the expression of pAkt in the cerebral cortex among groups, and the expression of pAkt in the cerebellum was significantly higher in the HFD-HI group as compared with that in the CON group (p<0.05). There were also no between-group differences in pAkt expression in the cerebellum among the various exercise groups. In conclusion, nNOS seems to be overexpressed in response to obesity, and it appears to be downregulated by exercise. Relatively high-intensity exercise may be effective in improving brain function by downregulating nNOS.

최근 비만에 의해 과발현된 신경세포형 산화질소 생성효소(neuronal nitric oxide synthase, nNOS)가 정서적 행동을 조절하는 중요한 인자라는 보고되었다. 이와 관련한 최근의 연구에서 운동이 비만에 의해 과발현된 nNOS를 억제하고 정서적 우울감과 항불안 효과를 감소시켰다는 연구결과가 보고되었다. 운동은 nNOS를 억제하여 뇌의 기능을 향상시킬 수 있는 효과적인 전략으로 보이지만 운동은 강도에 따라 면역 반응에 큰 차이가 있다. 따라서 본 연구에서는 고지방식이(high-fat diet, HFD)로 유도된 비만 마우스에서 다른 강도의 운동을 실시하여 해마의 nNOS 발현의 차이를 분석하고자 하였다. 실험동물은 C57BL/6 마우스를 사용하였다. 대조군(CON, n=14)을 제외한 마우스(n=35)에게 6주 동안 60%의 고지방식이를 섭취시켜 비만을 유도하였다. 6주간의 비만유도 기간이 종료된 후 CON과 비만이 유도된 동물 각각 7마리씩 희생하여 비만유도를 확인하는데 사용되었다. 나머지 동물은 8주간의 운동중재 연구에 이용되었다. 이 때 CON을 제외하고 비만이 유도된 동물들은 고지방대조군(HFD) 그리고 저강도운동군(HFD-LI, n=7) 중강도운동군(HFD-MI, n=7) 그리고 HFD-고강도(HFD-HI, n=7)로 나누어졌다. HFD-LI는 12 m/min으로 75분, HFD-MI는 15 m/min으로 60분 그리고 HFD-HI는 18 m/min으로 50분 동안 동물용 트레드밀에서 운동이 수행되었다(동등한 운동량, 900 m). 해마(hippocampus)의 nNOS 단백질의 발현은 CON에 비해 HFD에서 유의하게 높았고(p<0.01), CON과 운동을 실시한 모든 그룹과 차이가 없었다. 하지만 HFD-LI에 비해 HFD-HI가 유의하게 nNOS 발현이 낮았다(p<0.05). 대뇌피질에서는 CON에 비해 HFD에서 유의하게 높았으나(p<0.01), 다른 그룹 간에 차이는 없었다. nNOS의 생성을 조절할 수 있는 인산화된 Akt (pAkt)의 발현이 CON과 HFD에 비해 운동을 실시한 나머지 그룹 모두에서 유의하게 높았다. 대뇌피질에서의 pAkt의 발현에서는 차이가 모든 그룹 간에 차이가 없었고, 소뇌에서는 CON에 비해 HFD-HI에서 유의하게 높았다(p<0.05). 소뇌에서는 각 그룹 간에 차이가 없었다. 결론적으로 nNOS는 고지방식이와 비만에 의해 과발현된 것으로 보여지고 이를 운동을 통하여 낮출 수 있는 것으로 보여지며, 이 때 운동량이 같다는 가정하에 상대적으로 높은 강도가 효과적일 가능성이 있다.

Keywords

SMGHBM_2019_v29n1_18_f0001.png 이미지

Fig. 1. Experimental design.

SMGHBM_2019_v29n1_18_f0002.png 이미지

Fig. 2. A. Body weight change during the total experiment period in the total group. B. Body weight change during the induction of obesity phase in the normal diet-fed group and high-fat diet-fed group. C. Body weight change during the intervention phase in the exercised group. D. Food efficiency ratio.

SMGHBM_2019_v29n1_18_f0003.png 이미지

Fig. 3. Western blot showing nNOS protein in the hippocampus (A), cerebral cortex (B), and cerebellum (C) of all groups (1:CON; 2:HFD; 3:HFD-LI; 4;HFD-MI; 5:HFD-HI).

SMGHBM_2019_v29n1_18_f0004.png 이미지

Fig. 4. nNOS gene expression levels in the cerebral cortex (A) and cerebellum (B) of all groups.

SMGHBM_2019_v29n1_18_f0005.png 이미지

Fig. 5. Western blot showing pAktSer473 protein in the hippocampus (A), cerebral cortex (B), and cerebellum (C) of all groups (1:CON; 2:HFD; 3:HFD-LI; 4;HFD-MI; 5:HFD-HI).

References

  1. Abbott, L. C. and Nahm, S. S. 2004. Neuronal nitric oxide synthase expression in cerebellar mutant mice. Cerebellum 3, 141-151. https://doi.org/10.1080/14734220410031927
  2. Abel, E. D., Peroni, O., Kim, J. K., Kim, Y. B., Boss, O., Hadro, E., Minnemann, T., Shulman, G. I. and Kahn, B. B. 2001. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729-733. https://doi.org/10.1038/35055575
  3. Akgoren, N., Fabricius, M. and Lauritzen, M. 1994. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation. Proc. Natl. Acad. Sci. USA. 91, 5903-5907. https://doi.org/10.1073/pnas.91.13.5903
  4. Anaeigoudari, A., Soukhtanloo, M., Shafei, M. N., Sadeghnia, H. R., Reisi, P., Beheshti, F., Behradnia, S., Mousavi, S. M. and Hosseini, M. 2016. Neuronal nitric oxide synthase has a role in the detrimental effects of lipopolysaccharide on spatial memory and synaptic plasticity in rats. Pharmacol. Rep. 68, 243-249. https://doi.org/10.1016/j.pharep.2015.09.004
  5. Baek, K. W. 2018. Effects of a single of bout exercise on the macrophage phenotypic ratio in the adipose tissue of high-fat diet-induced obese mice. Exerc. Sci. 27, 12.
  6. Baek, K. W., Cha, H. J., Ock, M. S., Kim, H. S., Gim, J. A. and Park, J. J. 2018. Effects of regular-moderate exercise on high-fat diet-induced intramyocellular lipid accumulation in the soleus muscle of Sprague-Dawley rats. J. Exerc. Rehabil. 14, 32-38. https://doi.org/10.12965/jer.1835166.583
  7. Billat, V. L., Mouisel, E., Roblot, N. and Melki, J. 2005. Interand intrastrain variation in mouse critical running speed. J. Appl. Physiol. (1985) 98, 1258-1263. https://doi.org/10.1152/japplphysiol.00991.2004
  8. Blair, S. N., Horton, E., Leon, A. S., Lee, I. M., Drinkwater, B. L., Dishman, R. K., Mackey, M. and Kienholz, M. L. 1996. Physical activity, nutrition, and chronic disease. Med. Sci. Sports Exerc. 28, 335-349. https://doi.org/10.1097/00005768-199603000-00009
  9. Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhi, M., Dawson, T. M. and Snyder, S. H. 1991. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615-624. https://doi.org/10.1016/0896-6273(91)90374-9
  10. Bredt, D. S. and Snyder, S. H. 1992. Nitric oxide, a novel neuronal messenger. Neuron 8, 3-11. https://doi.org/10.1016/0896-6273(92)90104-L
  11. Bredt, D. S. and Snyder, S. H. 1994. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron 13, 301-313. https://doi.org/10.1016/0896-6273(94)90348-4
  12. Camer, D., Yu, Y., Szabo, A., Fernandez, F., Dinh, C. H. L. and Huang, X. F. 2015. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory. Prog. Neuropsychopharmacol. Biol. Psychiatry 59, 68-75. https://doi.org/10.1016/j.pnpbp.2015.01.004
  13. Canabal, D. D., Song, Z., Potian, J. G., Beuve, A., McArdle, J. J. and Routh, V. H. 2007. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose- inhibited neurons in the ventromedial hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1418-1428. https://doi.org/10.1152/ajpregu.00216.2006
  14. Chalimoniuk, M., Chrapusta, S. J., Lukacova, N. and Langfort, J. 2015. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3',5'-monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res. 1618, 29-40. https://doi.org/10.1016/j.brainres.2015.05.020
  15. Chen, M. J., Ivy, A. S. and Russo-Neustadt, A. A. 2006. Nitric oxide synthesis is required for exercise-induced increases in hippocampal BDNF and phosphatidylinositol 3' kinase expression. Brain Res. Bull. 68, 257-268. https://doi.org/10.1016/j.brainresbull.2005.08.013
  16. Cherbuin, N., Sargent-Cox, K., Fraser, M., Sachdev, P. and Anstey, K. J. 2015. Being overweight is associated with hippocampal atrophy: the PATH Through Life Study. Int. J. Obes (Lond). 39, 1509-1514. https://doi.org/10.1038/ijo.2015.106
  17. Dunn, R. W., Reed, T. A., Copeland, P. D. and Frye, C. A. 1998. The nitric oxide synthase inhibitor 7-nitroindazole displays enhanced anxiolytic efficacy without tolerance in rats following subchronic administration. Neuropharmacology 37, 899-904. https://doi.org/10.1016/S0028-3908(98)00076-8
  18. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2011. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 108, 3017-3022. https://doi.org/10.1073/pnas.1015950108
  19. Fulton, D., Gratton, J. P., McCabe, T. J., Fontana, J., Fujio, Y., Walsh, K., Franke, T. F., Papapetropoulos, A. and Sessa, W. C. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601. https://doi.org/10.1038/21218
  20. Gammie, S. C., Olaghere-da Silva, U. B. and Nelson, R. J. 2000. 3-bromo-7-nitroindazole, a neuronal nitric oxide synthase inhibitor, impairs maternal aggression and citrulline immunoreactivity in prairie voles. Brain. Res. 870, 80-86. https://doi.org/10.1016/S0006-8993(00)02404-5
  21. Gleeson, M. 2007. Immune function in sport and exercise. J. Appl. Physiol. 103, 693-699. https://doi.org/10.1152/japplphysiol.00008.2007
  22. Jacka, F. N., Cherbuin, N., Anstey, K. J., Sachdev, P. and Butterworth, P. 2015. Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC. Med. 13, 215. https://doi.org/10.1186/s12916-015-0461-x
  23. Jacka, F. N., Pasco, J. A., Mykletun, A., Williams, L. J., Hodge, A. M., O'Reilly, S. L., Nicholson, G. C., Kotowicz, M. A. and Berk, M. 2010. Association of Western and traditional diets with depression and anxiety in women. Am. J. Psychiatry 167, 305-311. https://doi.org/10.1176/appi.ajp.2009.09060881
  24. Joca, S. R. and Guimaraes, F. S. 2006. Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology (Berl) 185, 298-305. https://doi.org/10.1007/s00213-006-0326-2
  25. Kasamatsu, S., Watanabe, Y., Sawa, T., Akaike, T. and Ihara, H. 2014. Redox signal regulation via nNOS phosphorylation at Ser847 in PC12 cells and rat cerebellar granule neurons. Biochem. J. 459, 251-263. https://doi.org/10.1042/BJ20131262
  26. Kawanishi, N., Yano, H., Yokogawa, Y. and Suzuki, K. 2010. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 16, 105-118.
  27. Kempen, K. P., Saris, W. H. and Westerterp, K. R. 1995. Energy balance during an 8-wk energy-restricted diet with and without exercise in obese women. Am. J. Clin. Nutr. 62, 722-729. https://doi.org/10.1093/ajcn/62.4.722
  28. Kobilo, T., Liu, Q. R., Gandhi, K., Mughal, M., Shaham, Y. and van Praag, H. 2011. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn. Mem. 18, 605-609. https://doi.org/10.1101/lm.2283011
  29. Krass, M., Runkorg, K., Wegener, G. and Volke, V. 2010. Nitric oxide is involved in the regulation of marble-burying behavior. Neurosci. Lett. 480, 55-58. https://doi.org/10.1016/j.neulet.2010.06.002
  30. Lindqvist, A., Mohapel, P., Bouter, B., Frielingsdorf, H., Pizzo, D., Brundin, P. and Erlanson-Albertsson, C. 2006. High-fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol. 13, 1385-1388. https://doi.org/10.1111/j.1468-1331.2006.01500.x
  31. Liu, Y., Fu, X., Lan, N., Li, S., Zhang, J., Wang, S., Li, C., Shang, Y., Huang, T. and Zhang, L. 2014. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res. 267, 178-188. https://doi.org/10.1016/j.bbr.2014.02.040
  32. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  33. Mayer, B., John, M. and Bohme, E. 1990. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin. FEBS Lett. 277, 215-219. https://doi.org/10.1016/0014-5793(90)80848-D
  34. Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K. and Gomez-Pinilla, F. 2002. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112, 803-814. https://doi.org/10.1016/S0306-4522(02)00123-9
  35. Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., Abraham, J. P., Abu-Rmeileh, N. M., Achoki, T., AlBuhairan, F. S., Alemu, Z. A., Alfonso, R., Ali, M. K., Ali, R., Guzman, N. A., Ammar, W., Anwari, P., Banerjee, A., Barquera, S., Basu, S., Bennett, D. A., Bhutta, Z., Blore, J., Cabral, N., Nonato, I. C., Chang, J. C., Chowdhury, R., Courville, K. J., Criqui, M. H., Cundiff, D. K., Dabhadkar, K. C., Dandona, L., Davis, A., Dayama, A., Dharmaratne, S. D., Ding, E. L., Durrani, A. M., Esteghamati, A., Farzadfar, F., Fay, D. F., Feigin, V. L., Flaxman, A., Forouzanfar, M. H., Goto, A., Green, M. A., Gupta, R., Hafezi-Nejad, N., Hankey, G. J., Harewood, H. C., Havmoeller, R., Hay, S., Hernandez, L., Husseini, A., Idrisov, B. T., Ikeda, N., Islami, F., Jahangir, E., Jassal, S. K., Jee, S. H., Jeffreys, M., Jonas, J. B., Kabagambe, E. K., Khalifa, S. E., Kengne, A. P., Khader, Y. S., Khang, Y. H., Kim, D., Kimokoti, R. W., Kinge, J. M., Kokubo, Y., Kosen, S., Kwan, G., Lai, T., Leinsalu, M., Li, Y., Liang, X., Liu, S., Logroscino, G., Lotufo, P. A., Lu, Y., Ma, J., Mainoo, N. K., Mensah, G. A., Merriman, T. R., Mokdad, A. H., Moschandreas, J., Naghavi, M., Naheed, A., Nand, D., Narayan, K. M., Nelson, E. L., Neuhouser, M. L., Nisar, M. I., Ohkubo, T., Oti, S. O., Pedroza, A., Prabhakaran, D., Roy, N., Sampson, U., Seo, H., Sepanlou, S. G., Shibuya, K., Shiri, R., Shiue, I., Singh, G. M., Singh, J. A., Skirbekk, V., Stapelberg, N. J., Sturua, L., Sykes, B. L., Tobias, M., Tran, B. X., Trasande, L., Toyoshima, H., van de Vijver, S., Vasankari, T. J., Veerman, J. L., Velasquez- Melendez, G., Vlassov, V. V., Vollset, S. E., Vos, T., Wang, C., Wang, X., Weiderpass, E., Werdecker, A., Wright, J. L., Yang, Y. C., Yatsuya, H., Yoon, J., Yoon, S. J., Zhao, Y., Zhou, M., Zhu, S., Lopez, A. D., Murray, C. J. and Gakidou, E. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766-781. https://doi.org/10.1016/S0140-6736(14)60460-8
  36. Nieman, D. C. 1994. Exercise, infection, and immunity. Int. J. Sports Med. 15 Suppl 3, S131-141. https://doi.org/10.1055/s-2007-1021128
  37. Oliveira, A. G., Araujo, T. G., Carvalho, B. M., Guadagnini, D., Rocha, G. Z., Bagarolli, R. A., Carvalheira, J. B. and Saad, M. J. 2013. Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity (Silver Spring) 21, 2545-2556. https://doi.org/10.1002/oby.20402
  38. Park, C., Shin, K. S., Ryu, J. H., Kang, K., Kim, J., Ahn, H. and Huh, Y. 2004. The inhibition of nitric oxide synthase enhances PSA-NCAM expression and CREB phosphorylation in the rat hippocampus. Neuroreport 15, 231-234. https://doi.org/10.1097/00001756-200402090-00003
  39. Park, H. R., Park, M., Choi, J., Park, K. Y., Chung, H. Y. and Lee, J. 2010. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci. Lett. 482, 235-239. https://doi.org/10.1016/j.neulet.2010.07.046
  40. Pedersen, B. K. and Saltin, B. 2006. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports 16 Suppl 1, 3-63. https://doi.org/10.1111/j.1600-0838.2006.00520.x
  41. Racette, S. B., Schoeller, D. A., Kushner, R. F., Neil, K. M. and Herling-Iaffaldano, K. 1995. Effects of aerobic exercise and dietary carbohydrate on energy expenditure and body composition during weight reduction in obese women. Am. J. Clin. Nutr. 61, 486-494. https://doi.org/10.1093/ajcn/61.3.486
  42. Ropelle, E. R., Flores, M. B., Cintra, D. E., Rocha, G. Z., Pauli, J. R., Morari, J., de Souza, C. T., Moraes, J. C., Prada, P. O., Guadagnini, D., Marin, R. M., Oliveira, A. G., Augusto, T. M., Carvalho, H. F., Velloso, L. A., Saad, M. J. and Carvalheira, J. B. 2010. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS. Biol. 8, e1000465. https://doi.org/10.1371/journal.pbio.1000465
  43. Soya, H., Nakamura, T., Deocaris, C. C., Kimpara, A., Iimura, M., Fujikawa, T., Chang, H., McEwen, B. S. and Nishijima, T. 2007. BDNF induction with mild exercise in the rat hippocampus. Biochem. Biophys. Res. Commun. 358, 961-967. https://doi.org/10.1016/j.bbrc.2007.04.173
  44. Tomiga, Y., Ito, A., Sudo, M., Ando, S., Maruyama, A., Nakashima, S., Kawanaka, K., Uehara, Y., Kiyonaga, A., Tanaka, H. and Higaki, Y. 2016. Effects of environmental enrichment in aged mice on anxiety-like behaviors and neuronal nitric oxide synthase expression in the brain. Biochem. Biophys. Res. Commun. 476, 635-640. https://doi.org/10.1016/j.bbrc.2016.06.010
  45. Tomiga, Y., Yoshimura, S., Ito, A., Nakashima, S., Kawanaka, K., Uehara, Y., Tanaka, H. and Higaki, Y. 2017. Exercise training rescues high fat diet-induced neuronal nitric oxide synthase expression in the hippocampus and cerebral cortex of mice. Nitric Oxide 66, 71-77. https://doi.org/10.1016/j.niox.2017.03.002
  46. Velthuis-te Wierik, E. J., Westerterp, K. R. and van den Berg, H. 1995. Impact of a moderately energy-restricted diet on energy metabolism and body composition in non-obese men. Int. J. Obes. Relat. Metab. Disord. 19, 318-324.
  47. Volke, V., Wegener, G., Bourin, M. and Vasar, E. 2003. Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav. Brain Res. 140, 141-147. https://doi.org/10.1016/S0166-4328(02)00312-1
  48. Wultsch, T., Chourbaji, S., Fritzen, S., Kittel, S., Grunblatt, E., Gerlach, M., Gutknecht, L., Chizat, F., Golfier, G., Schmitt, A., Gass, P., Lesch, K. P. and Reif, A. 2007. Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animals. J. Neural. Transm. Suppl. 2007, 69-85.
  49. Zhang, J., Huang, X. Y., Ye, M. L., Luo, C. X., Wu, H. Y., Hu, Y., Zhou, Q. G., Wu, D. L., Zhu, L. J. and Zhu, D. Y. 2010. Neuronal nitric oxide synthase alteration accounts for the role of 5-HT1A receptor in modulating anxiety-related behaviors. J. Neurosci. 30, 2433-2441. https://doi.org/10.1523/JNEUROSCI.5880-09.2010
  50. Zhou, Q. G., Hu, Y., Hua, Y., Hu, M., Luo, C. X., Han, X., Zhu, X. J., Wang, B., Xu, J. S. and Zhu, D. Y. 2007. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J. Neurochem. 103, 1843-1854. https://doi.org/10.1111/j.1471-4159.2007.04914.x