Fig. 1. MCF-7 cells acquire the potential to exhibit EMT during MTS culture.
Fig. 2. RAGE/TLR2/4 signaling is involved in MTS culture-induced EMT via Snail activation.
Fig. 3. The expression of RAGE, and TLR2/4 in human tumors.
Table 1. shRNA target sequences used in this paper
Table 2. Primer sequences used in this study
참고문헌
- Bald, T., Quast, T., Landsberg, J., Rogava, M., Glodde, N., Lopez-Ramos, D., Kohlmeyer, J., Riesenberg, S., van den Boorn-Konijnenberg, D., Homig-Holzel, C., Reuten, R., Schadow, B., Weighardt, H., Wenzel, D., Helfrich, I., Schadendorf, D., Bloch, W., Bianchi, M. E., Lugassy, C., Barnhill, R. L., Koch, M., Fleischmann, B. K., Forster, I., Kastenmuller, W., Kolanus, W., Holzel, M., Gaffal, E. and Tuting, T. 2014. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109-113. https://doi.org/10.1038/nature13111
- Chen, R. C., Yi, P. P., Zhou, R. R., Xiao, M. F., Huang, Z. B., Tang, D. L., Huang, Y. and Fan, X. G. 2014. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol. Cell. Biochem. 390, 271-280. https://doi.org/10.1007/s11010-014-1978-6
- Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D., Calogero, R. A. and Cavallo, F. 2013. The noninflammatory role of high mobility group box 1/Tolllike receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27, 4731-4744. https://doi.org/10.1096/fj.13-230201
- Dang, C. V., Kim, J. W., Gao, P. and Yustein, J. 2008. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8, 51-56. https://doi.org/10.1038/nrc2274
- De Craene, B. and Berx, G. 2013. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97-110. https://doi.org/10.1038/nrc3447
- DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
- Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D. A., Jin, S. and White, E. 2006. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64. https://doi.org/10.1016/j.ccr.2006.06.001
- Denko, N. C. 2008. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705-713. https://doi.org/10.1038/nrc2468
- Edinger, A. L. and Thompson, C. B. 2004. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663-669. https://doi.org/10.1016/j.ceb.2004.09.011
- Fukata, M., Chen, A., Vamadevan, A. S., Cohen, J., Breglio, K., Krishnareddy, S., Hsu, D., Xu, R., Harpaz, N., Dannenberg, A. J., Subbaramaiah, K., Cooper, H. S., Itzkowitz, S. H. and Abreu, M. T. 2007. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869-1881. https://doi.org/10.1053/j.gastro.2007.09.008
- Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V. and Semenza, G. L. 2007. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111-122. https://doi.org/10.1016/j.cell.2007.01.047
- Gatenby, R. A. and Gillies, R. J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899. https://doi.org/10.1038/nrc1478
- Golstein, P. and Kroemer, G. 2007. Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37-43. https://doi.org/10.1016/j.tibs.2006.11.001
- Guo, Z. S., Liu, Z., Bartlett, D. L., Tang, D. and Lotze, M. T. 2013. Life after death: targeting high mobility group box 1 in emergent cancer therapies. Am. J. Cancer Res. 3, 1-20.
- He, M., Kubo, H., Ishizawa, K., Hegab, A. E., Yamamoto, Y., Yamamoto, H. and Yamaya, M. 2007. The role of the receptor for advanced glycation end-products in lung fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L1427-1436. https://doi.org/10.1152/ajplung.00075.2007
- Hielscher, A. and Gerecht, S. 2015. Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic. Biol. Med. 79, 281-291. https://doi.org/10.1016/j.freeradbiomed.2014.09.015
- Horning, J. L., Sahoo, S. K., Vijayaraghavalu, S., Dimitrijevic, S., Vasir, J. K., Jain, T. K., Panda, A. K. and Labhasetwar, V. 2008. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol. Pharm. 5, 849-862. https://doi.org/10.1021/mp800047v
- Hsu, P. P. and Sabatini, D. M. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707. https://doi.org/10.1016/j.cell.2008.08.021
- Hua, D., Liu, M. Y., Cheng, Z. D., Qin, X. J., Zhang, H. M., Chen, Y., Qin, G. J., Liang, G., Li, J. N., Han, X. F. and Liu, D. X. 2009. Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Mol. Immunol. 46, 2876-2884. https://doi.org/10.1016/j.molimm.2009.06.016
- Ivascu, A. and Kubbies, M. 2007. Diversity of cell-mediated adhesions in breast cancer spheroids. Int. J. Oncol. 31, 1403-1413.
- Kang, R., Tang, D., Schapiro, N. E., Livesey, K. M., Farkas, A., Loughran, P., Bierhaus, A., Lotze, M. T. and Zeh, H. J. 2010. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 17, 666-676. https://doi.org/10.1038/cdd.2009.149
- Kang, R., Tang, D., Schapiro, N. E., Loux, T., Livesey, K. M., Billiar, T. R., Wang, H., Van Houten, B., Lotze, M. T. and Zeh, H. J. 2014. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 33, 567-577. https://doi.org/10.1038/onc.2012.631
- Kang, R., Zhang, Q., Zeh, H. J. 3rd., Lotze, M. T. and Tang, D. 2013. HMGB1 in cancer: good, bad, or both? Clin. Cancer Res. 19, 4046-4057. https://doi.org/10.1158/1078-0432.CCR-13-0495
- Kim, C. H., Jeon, H. M., Lee, S. Y., Ju, M. K., Moon, J. Y., Park, H. G., Yoo, M. A., Choi, B. T., Yook, J. I., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Implication of snail in metabolic stress-induced necrosis. PLoS One 6, e18000. https://doi.org/10.1371/journal.pone.0018000
- Kim, J. W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
- Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., Luo, J. L. and Karin, M. 2009. Carcinomaproduced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102-106. https://doi.org/10.1038/nature07623
- Kondo, Y., Kanzawa, T., Sawaya, R. and Kondo, S. 2005. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726-734. https://doi.org/10.1038/nrc1692
- Kunjithapatham, R., Karthikeyan, S., Geschwind, J. F., Kieserman, E., Lin, M., Fu, D. X. and Ganapathy-Kanniappan, S. 2014. Reversal of anchorage-independent multicellular spheroid into a monolayer mimics a metastatic model. Sci. Rep. 4, 6816. https://doi.org/10.1038/srep06816
- Lamouille, S., Xu, J. and Derynck, R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
- Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72, 3607-3617. https://doi.org/10.1158/0008-5472.CAN-12-0006
- Lee, S. Y., Jeon, H. M., Kim, C. H., Ju, M. K., Bae, H. S., Park, H. G., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis. Mol. Cancer 10, 113. https://doi.org/10.1186/1476-4598-10-113
- Lee, S. Y., Ju, M. K., Jeon, H. M., Jeong, E. K., Lee, Y. J., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2018. Regulation of Tumor Progression by Programmed Necrosis. Oxid. Med. Cell. Longev. 2018, 3537471.
- Liu, A., Fang, H., Dirsch, O., Jin, H. and Dahmen, U. 2012. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion. PLoS One 7, e35379. https://doi.org/10.1371/journal.pone.0035379
- Lotze, M. T. and Tracey, K. J. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331-342. https://doi.org/10.1038/nri1594
- Lynch, J., Nolan, S., Slattery, C., Feighery, R., Ryan, M. P. and McMorrow, T. 2010. High-mobility group box protein 1: a novel mediator of inflammatory-induced renal epithelial-mesenchymal transition. Am. J. Nephrol. 32, 590-602. https://doi.org/10.1159/000320485
- Marin-Hernandez, A., Gallardo-Perez, J. C., Hernandez-Resendiz, I., Del Mazo-Monsalvo, I., Robledo-Cadena, D. X., Moreno-Sanchez, R. and Rodriguez-Enriquez, S. 2016. Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic HeLa cell cultures and microspheroids. J. Cell. Physiol. 232, 1346-1359. https://doi.org/10.1002/jcp.25617
- Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P. J., Bunz, F. and Hwang, P. M. 2006. p53 regulates mitochondrial respiration. Science 312, 1650-1653. https://doi.org/10.1126/science.1126863
- Palumbo, R., Sampaolesi, M., De Marchis, F., Tonlorenzi, R., Colombetti, S., Mondino, A., Cossu, G. and Bianchi, M. E. 2004. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J. Cell Biol. 164, 441-449. https://doi.org/10.1083/jcb.200304135
- Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. and Denko, N. C. 2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. https://doi.org/10.1016/j.cmet.2006.01.012
- Rouhiainen, A., Kuja-Panula, J., Tumova, S. and Rauvala, H. 2013. RAGE-mediated cell signaling. Methods Mol. Biol. 963, 239-263. https://doi.org/10.1007/978-1-62703-230-8_15
- Sabharwal, S. S. and Schumacker, P. T. 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709-721. https://doi.org/10.1038/nrc3803
- Scaffidi, P., Misteli, T. and Bianchi, M. E. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195. https://doi.org/10.1038/nature00858
- Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R. and Coyle, A. J. 2010. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367-388. https://doi.org/10.1146/annurev.immunol.021908.132603
- Taguchi, A., Blood, D. C., del Toro, G., Canet, A., Lee, D. C., Qu, W., Tanji, N., Lu, Y., Lalla, E., Fu, C., Hofmann, M. A., Kislinger, T., Ingram, M., Lu, A., Tanaka, H., Hori, O., Ogawa, S., Stern, D. M. and Schmidt, A. M. 2000. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354-360. https://doi.org/10.1038/35012626
- Thiery, J. P. and Sleeman, J. P. 2006. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131-142. https://doi.org/10.1038/nrm1835
- Tsai, J. H. and Yang, J. 2013. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27, 2192-2206. https://doi.org/10.1101/gad.225334.113
- Tye, H., Kennedy, C. L., Najdovska, M., McLeod, L., Mc Cormack, W., Hughes, N., Dev, A., Sievert, W., Ooi, C. H., Ishikawa, T. O., Oshima, H., Bhathal, P. S., Parker, A. E., Oshima, M., Tan, P. and Jenkins, B. J. 2012. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 22, 466-478. https://doi.org/10.1016/j.ccr.2012.08.010
- Vakkila, J. and Lotze, M. T. 2004. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4, 641-648. https://doi.org/10.1038/nri1415
- Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
- Yan, W., Chang, Y., Liang, X., Cardinal, J. S., Huang, H., Thorne, S. H., Monga, S. P., Geller, D. A., Lotze, M. T. and Tsung, A. 2012. High-mobility group box 1 activates caspase- 1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55, 1863-1875. https://doi.org/10.1002/hep.25572
- Yu, L. X., Yan, L., Yang, W., Wu, F. Q., Ling, Y., Chen, S. Z., Tang, L., Tan, Y. X., Cao, D., Wu, M. C., Yan, H. X. and Wang, H. Y. 2014. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat. Commun. 5, 5256. https://doi.org/10.1038/ncomms6256
- Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., Dang, C. V. and Semenza, G. L. 2007. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407-420. https://doi.org/10.1016/j.ccr.2007.04.001
- Zhu, L., Li, X., Chen, Y., Fang, J. and Ge, Z. 2015. High-mobility group box 1: a novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma. Cancer Lett. 357, 527-534. https://doi.org/10.1016/j.canlet.2014.12.012
- Zong, W. X. and Thompson, C. B. 2006. Necrotic death as a cell fate. Genes Dev. 20, 1-15. https://doi.org/10.1101/gad.1376506