References
- Assem, H., Ghariba, S., Makrai, G., Johnson, P., Gill, L., and Pilla, F., (2017). Urban Water Flow and Water Level Prediction based on Deep Learning, Springer.
- Granata, F., Gargano, R. and Marinis, G. (2016). Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA's Storm Water Management Model. Water, Vol. 8, No. 3, doi:10.3390/w8030069.
- Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J. (2015). LSTM : A search space odyssey. Retrieved from https://arxiv.org.abs.1503.04069.
- Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. 14th International Conference on Artificial Inteligence and Statistics(AISTATS), Fort Lauderdale, FL, USA, Vol. 15.
- Hinton, G.E., and Salakhutdinov, R.R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, Vol. 313, No. 5786, pp. 504-507. https://doi.org/10.1126/science.1127647
- Hochreiter, S., Y. Bengio, P. Frasconi, and Schmidhuber, J. (2001). Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies, in A Field Guide to Dynamical Recurrent Neural Networks, edited by S. C. Kremer and J. F. Kolen, IEEE Press.
- Huber, W.C., and Dickson, R.E. (1988). Storm Water Management Model. User's Manual ver. 4, U.S. EPA.
- Hu, C., Wu, Q., Li, H., Jian, S., Li, N. and Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, Vol. 10, No. 11, doi.org/10.3390/w10111543.
- Kim, H.I., Keum, H.J. and Han, K.Y. (2018). Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis. Journal of the Korean Society of Civil Engineers, Vol. 38, No. 5, pp. 671-683. https://doi.org/10.12652/Ksce.2018.38.5.0671
- Kim, H.I., Lee,J.Y., Han,H.Y., and Jo,J.W.(2020) Applying Observed Rainfall and Deep Neural Network for Urban Flood Analysis, J.of Korea Society of Hazarrd Mitigation, Vol.20,No.1 Cacceptid for Publication).
- Kingma, D.P., and Ba, J.L. (2015). ADAM : A Method for Stochastic Optimization. ICLR.
- Li X., and Willems, P. (2018). A Data-Driven Hybrid Urban Flood Modeling Approach. EPiC Series in Engineering, HIC 2018, 13th International Conference on Hydroinformatics, Vol. 3, pp. 1193-1200.
- Mozer, M.C. (2007). A Focused Backpropagation Algorithm for Temporal Pattern Recognition, in Complex Systems (3), edited by Y. Chauvin and D. E. Rumelhart, pp. 349-381, L. Erlbaum Associates Inc., Hillsdale, NJ.
- Remesan, R., and Mathew, J. (2015). Hydrological Data Driven Modeling. Springer, Earth System Data and Models.
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Network from Overfitting. Journal of Machine Learning Research, Vol. 15, pp. 1929-1958.
- Seoul Metropolitan City. (2015). Comprehensive Plan for Storm and flood Damage Reduction. Korea, Vol. 1, Chapter 3, pp.374-375.
- Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research, Vol. 54, doi:10.1029/2018WR022643.
- Son, A.L., Kim, B.H. and Han, K. Y. (2015). A study on prediction of inundation area considering road network in urban area. Journal of the Korean Society of Civil Eng., Vol. 35, No. 2, pp.307-318. https://doi.org/10.12652/Ksce.2015.35.2.0307
- Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., 15, 1929-1958.
- Trottenberg, U., Oosterlee, C., and Schuller, A. (2000). Multigrid, Academic Press.
- Zhou, J., Peng, T., Zhang, C. and Sun, N. (2018). Data Pre-Analysis and Ensemble of Various Artificial Neural Networks for Monthly Streamflow Forecasting. Water, Vol. 10, No. 5, doi:10.3390/w10050628.