DOI QR코드

DOI QR Code

Link Budget Analysis of Communication System for Reliable WBAN

신뢰성있는 WBAN을 위한 통신 시스템의 링크 버짓 분석

  • Roh, Jae-sung (Department of Information & Communication Engineering, Seoil University)
  • 노재성 (서일대학교 정보통신공학과)
  • Received : 2019.11.20
  • Accepted : 2019.12.21
  • Published : 2019.12.30

Abstract

Wireless body area network (WBAN) is a networking technology that enables early detection of abnormal health conditions, real-time medical monitoring, and telemedicine support systems. The internet of things (IoT) for healthcare, which has become an issue recently, is one of the most promising areas for improving the quality of human life. It must meet the high QoS requirements of the medical communication system like any other communication system. Therefore, the bit error rate (BER) threshold was chosen to accommodate the QoS requirements of the WBAN communication system. In this paper, we calculated BER performance of WBAN channel using IR-UWB PPM modulation and analyzed link budget and system margin of WBAN according to various system parameters.

WBAN (wireless body area network)은 비정상적인 건강 상태, 실시간 의료 모니터링, 원격 의료 지원 시스템을 조기에 탐지할 수 있는 네트워킹 기술이다. 최근에 이슈가 되고 있는 건강 관리를 위한 사물 인터넷 (IoT; internet of things)은 인간의 삶의 질을 향상시키는 데 가장 유망한 분야 중에 하나이다. 이것은 다른 통신 시스템과 마찬가지로 의료 통신 시스템의 높은 QoS (quality of service)요구사항을 만족해야 한다. 따라서 WBAN 통신 시스템의 QoS 요구 사항을 수용하기 위해 오류율 (BER; bit error rate) 임계 값을 선택하였다. 본 논문에서는 IR-UWB PPM 변조 방식을 이용한 WBAN 채널의 BER 성능을 계산하고 WBAN의 링크 버짓과 시스템 마진을 다양한 시스템 파라미터에 따라 분석하였다.

Keywords

References

  1. H. S. Kim and H. Y. Hwang, "Performance evaluation of multi-hop transmissions in IEEE 802.15.6 UWB WBAN," Journal of the Korea Institute of Information and Communication Engineering, Vol. 21, No. 7, pp.1313-1319, 2017. https://doi.org/10.6109/jkiice.2017.21.7.1313
  2. B. C. Kang and J. S. Kim, "Low power beacon listening scheme using periodic signal characteristic in WBAN," The Journal of Korean Institute of Communications and Information Sciences, Vol. 44, No. 6, pp.1121-1123, 2019. https://doi.org/10.7840/kics.2019.44.6.1121
  3. Y. M. Park, "A study on the implementation of WBAN-based medical gateway," Journal of Advanced Navigation Technology, Vol. 18, No. 6, pp.640-647, 2014. https://doi.org/10.12673/jant.2014.18.6.640
  4. S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak, "The internet of things for health care: A comprehensive survey," IEEE Access, Vol. 3, pp.678-708, 2015. https://doi.org/10.1109/ACCESS.2015.2437951
  5. I. Hashemi, "The indoor radio propagation channel," Proceedings of the IEEE, Vol. 81, No. 7, pp.943-968, July 1993. https://doi.org/10.1109/5.231342
  6. T. Aoyagi, M. Kim, J. Takada, K. Hamaguchi, and R. Kohno, "Numerical simulations for wearable BAN propagation channel during various human movements," IEICE Transactions on Communications, Vol. 94-E, No. 9, pp.2496-2500, Sep. 2011.
  7. I. Khan, Y. Nechayev, and P. Hall, "On-body diversity channel characterization," IEEE Transactions on Antennas and Propagation, Vol. 58, pp.573-580, Feb. 2010. https://doi.org/10.1109/TAP.2009.2037759
  8. M. Cheffena, "Performance evaluation of wireless body sensors in the presence of slow and fast fading effects," IEEE Sensors Journal, Vol. 15, pp.5518-5526, 2015. https://doi.org/10.1109/JSEN.2015.2443251
  9. B. Latre, B. Braem, I. Moerman, C. Blondia, and P. Demeester, "A survey on wireless body area networks," Wireless Network, Vol. 17, No. 1, pp.1-18, 2011. https://doi.org/10.1007/s11276-010-0252-4
  10. Q. Wang, T. Tayamachi, I. Kimura, and J. Wang, "An on-body channel model for UWB body area communications for various postures," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, pp.991-998, Apr. 2009. https://doi.org/10.1109/TAP.2009.2014526
  11. J. G. Proakis, Digital Communications, 4th ed. New York, NY: McGraw-Hill, 1993.