References
-
P. Roy, S. Berger, P. Schmuki,
$TiO_2$ nanotubes: synthesis and applications, Angew. Chem. Int. Ed 50 (2011) 2904-2939. https://doi.org/10.1002/anie.201001374 - X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev, 107 (2007) 2891-2959. https://doi.org/10.1021/cr0500535
-
D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and
$TiO_2$ nanostructured materials: synthesis, properties, and applications, Adv. Mater, 18 (2006) 2807-2824. https://doi.org/10.1002/adma.200502696 - H.-H. Ou, S.-L. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Sep. Purif. Technol, 58 (2007) 179-191. https://doi.org/10.1016/j.seppur.2007.07.017
-
A.E.R. Mohamed, S. Rohani, Modified
$TiO_2$ nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review, Energy Environ. Sci, 4 (2011) 1065-1086. https://doi.org/10.1039/c0ee00488j -
G.L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, E. Selli, Exploiting the photonic crystal properties of
$TiO_2$ nanotube arrays to enhance photocatalytic hydrogen production, ACS Catal, 6 (2016) 1345-1353. https://doi.org/10.1021/acscatal.5b02817 -
H. Yin, H. Liu, W. Shen, The large diameter and fast growth of self-organized
$TiO_2$ nanotube arrays achieved via electrochemical anodization, Nanotechnology, 21 (2009) 035601. https://doi.org/10.1088/0957-4484/21/3/035601 -
D. Yu, X. Zhu, Z. Xu, X. Zhong, Q. Gui, Y. Song, S. Zhang, X. Chen, D. Li, Facile method to enhance the adhesion of
$TiO_2$ nanotube arrays to Ti substrate, ACS Appl. Mater. Interfaces, 6 (2014) 8001-8005. https://doi.org/10.1021/am5015716 -
M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, Anodic growth of highly ordered
$TiO_2$ nanotube arrays to$134{\mu}m$ in length, J. Phys. Chem. B, 110 (2006) 16179-16184. https://doi.org/10.1021/jp064020k - K. Lu, Z. Tian, J.A. Geldmeier, Polishing effect on anodic titania nanotube formation, Electrochim. Acta, 56 (2011) 6014-6020. https://doi.org/10.1016/j.electacta.2011.04.098
-
V. Asgari, M. Noormohammadi, A. Ramazani, M.A. Kashi, A new approach to electropolishing of pure Ti foil in acidic solution at room temperature for the formation of ordered and long
$TiO_2$ nanotube arrays, Corros. Sci, 136 (2018) 38-46. https://doi.org/10.1016/j.corsci.2018.02.040 -
H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for
$TiO_2$ nanotube array growth by anodization, J. Phys. Chem. A, 111 (2007) 7235-7241. -
C.W. Lai, S. Sreekantan, Photoelectrochemical performance of smooth
$TiO_2$ nanotube arrays: effect of anodization temperature and cleaning methods, Int. J. Photoenergy, 2012 (2012). -
T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial
$TiO_2$ films, Sci. Rep, 4 (2014) 4043. - M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki, Effect of crystallinity of anatase on photoactivity for methyleneblue decomposition in water, Appl. Catal. B, 49 (2004) 227-232. https://doi.org/10.1016/j.apcatb.2003.12.012
-
M.L. Grilli, M. Yilmaz, S. Aydogan, B.B. Cirak, Room temperature deposition of XRD-amorphous
$TiO_2$ thin films: Investigation of device performance as a function of temperature, Ceram. Int, 44 (2018) 11582-11590. https://doi.org/10.1016/j.ceramint.2018.03.222 -
K. Eufinger, D. Poelman, H. Poelman, R. De Gryse, G. Marin, Photocatalytic activity of dc magnetron sputter deposited amorphous
$TiO_2$ thin films, Appl. Surf. Sci, 254 (2007) 148-152. https://doi.org/10.1016/j.apsusc.2007.07.009 -
K. Kaur, C.V. Singh, Amorphous
$TiO_2$ as a photocatalyst for hydrogen production: a DFT study of structural and electronic properties, Energy Procedia, 29 (2012) 291-299. https://doi.org/10.1016/j.egypro.2012.09.035 - Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical water splitting, Springer, New York (2013) 7-17.