DOI QR코드

DOI QR Code

Photoelectrochemical Properties of TiO2 Nanotubes by Well-Controlled Anodization Process

양극산화 제어에 의한 TiO2 나노튜브의 광전기화학 특성

  • Jeong, Dasol (Nano Materials & Nano Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Donghyun (Nano Materials & Nano Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Hyunsung (Nano Materials & Nano Technology Center, Korea Institute of Ceramic Engineering and Technology)
  • 정다솔 (한국세라믹기술원 나노소재 공정센터) ;
  • 김동현 (한국세라믹기술원 나노소재 공정센터) ;
  • 정현성 (한국세라믹기술원 나노소재 공정센터)
  • Received : 2019.10.05
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

We investigated a correlation between morphology and photoelectrochemical properties of TiO2 nanotubes fabricated by well-controlled anodization processes. Anodization in an ethylene-glycol-based electrolyte solution accelerated the rapid grow rate of TiO2 nanotubes, but also cause problems such as delamination at the interface between TiO2 nanotubes and a Ti substrate, and debris on the top of the nanotube. The applied voltages for the anodization of TiO2 were adjusted to avoid the interface delamination. The heat treatment and the anodizing time were also controlled to enhance the crystallinity of the as-prepared TiO2 nanotubes and to increase the surface area with the varied length of the anodized TiO2 nanotubes. Additionally, a 2-step anodization process was utilized to remove the debris on the tube top. The photoelectrochemical properties of TiO2 nanotubes prepared with the carefully tailored conditions were investigated. By removing the debris on TiO2 nanotubes, applied bias photon-to-current efficiency (ABPE) of TiO2 nanotubes increased up to 0.33%.

Keywords

References

  1. P. Roy, S. Berger, P. Schmuki, $TiO_2$ nanotubes: synthesis and applications, Angew. Chem. Int. Ed 50 (2011) 2904-2939. https://doi.org/10.1002/anie.201001374
  2. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev, 107 (2007) 2891-2959. https://doi.org/10.1021/cr0500535
  3. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and $TiO_2$ nanostructured materials: synthesis, properties, and applications, Adv. Mater, 18 (2006) 2807-2824. https://doi.org/10.1002/adma.200502696
  4. H.-H. Ou, S.-L. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Sep. Purif. Technol, 58 (2007) 179-191. https://doi.org/10.1016/j.seppur.2007.07.017
  5. A.E.R. Mohamed, S. Rohani, Modified $TiO_2$ nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review, Energy Environ. Sci, 4 (2011) 1065-1086. https://doi.org/10.1039/c0ee00488j
  6. G.L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, E. Selli, Exploiting the photonic crystal properties of $TiO_2$ nanotube arrays to enhance photocatalytic hydrogen production, ACS Catal, 6 (2016) 1345-1353. https://doi.org/10.1021/acscatal.5b02817
  7. H. Yin, H. Liu, W. Shen, The large diameter and fast growth of self-organized $TiO_2$ nanotube arrays achieved via electrochemical anodization, Nanotechnology, 21 (2009) 035601. https://doi.org/10.1088/0957-4484/21/3/035601
  8. D. Yu, X. Zhu, Z. Xu, X. Zhong, Q. Gui, Y. Song, S. Zhang, X. Chen, D. Li, Facile method to enhance the adhesion of $TiO_2$ nanotube arrays to Ti substrate, ACS Appl. Mater. Interfaces, 6 (2014) 8001-8005. https://doi.org/10.1021/am5015716
  9. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, Anodic growth of highly ordered $TiO_2$ nanotube arrays to $134{\mu}m$ in length, J. Phys. Chem. B, 110 (2006) 16179-16184. https://doi.org/10.1021/jp064020k
  10. K. Lu, Z. Tian, J.A. Geldmeier, Polishing effect on anodic titania nanotube formation, Electrochim. Acta, 56 (2011) 6014-6020. https://doi.org/10.1016/j.electacta.2011.04.098
  11. V. Asgari, M. Noormohammadi, A. Ramazani, M.A. Kashi, A new approach to electropolishing of pure Ti foil in acidic solution at room temperature for the formation of ordered and long $TiO_2$ nanotube arrays, Corros. Sci, 136 (2018) 38-46. https://doi.org/10.1016/j.corsci.2018.02.040
  12. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for $TiO_2$ nanotube array growth by anodization, J. Phys. Chem. A, 111 (2007) 7235-7241.
  13. C.W. Lai, S. Sreekantan, Photoelectrochemical performance of smooth $TiO_2$ nanotube arrays: effect of anodization temperature and cleaning methods, Int. J. Photoenergy, 2012 (2012).
  14. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial $TiO_2$ films, Sci. Rep, 4 (2014) 4043.
  15. M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki, Effect of crystallinity of anatase on photoactivity for methyleneblue decomposition in water, Appl. Catal. B, 49 (2004) 227-232. https://doi.org/10.1016/j.apcatb.2003.12.012
  16. M.L. Grilli, M. Yilmaz, S. Aydogan, B.B. Cirak, Room temperature deposition of XRD-amorphous $TiO_2$ thin films: Investigation of device performance as a function of temperature, Ceram. Int, 44 (2018) 11582-11590. https://doi.org/10.1016/j.ceramint.2018.03.222
  17. K. Eufinger, D. Poelman, H. Poelman, R. De Gryse, G. Marin, Photocatalytic activity of dc magnetron sputter deposited amorphous $TiO_2$ thin films, Appl. Surf. Sci, 254 (2007) 148-152. https://doi.org/10.1016/j.apsusc.2007.07.009
  18. K. Kaur, C.V. Singh, Amorphous $TiO_2$ as a photocatalyst for hydrogen production: a DFT study of structural and electronic properties, Energy Procedia, 29 (2012) 291-299. https://doi.org/10.1016/j.egypro.2012.09.035
  19. Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical water splitting, Springer, New York (2013) 7-17.