DOI QR코드

DOI QR Code

우수자원 선발을 위한 고구마 유전자원의 주요 특성 평가

Crop Characteristics of Sweetpotato (Ipomoea batatas L.) Germplasms for Optimizing the Selection of Resources

  • 박원 (국립식량과학원 바이오에너지작물연구소) ;
  • 이형운 (국립식량과학원 바이오에너지작물연구소) ;
  • 고산 (국립식량과학원 바이오에너지작물연구소) ;
  • 이임빈 (국립식량과학원 바이오에너지작물연구소) ;
  • 남상식 (국립식량과학원 바이오에너지작물연구소) ;
  • 정미남 (국립식량과학원 바이오에너지작물연구소) ;
  • 유경단 (국립식량과학원 바이오에너지작물연구소) ;
  • 황엄지 (국립식량과학원 바이오에너지작물연구소) ;
  • 이승용 (국립식량과학원 바이오에너지작물연구소) ;
  • 박진천 (국립식량과학원 바이오에너지작물연구소) ;
  • 나라얀찬드라폴 (국립식량과학원 바이오에너지작물연구소) ;
  • 한선경 (국립식량과학원 바이오에너지작물연구소)
  • Park, Won (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Lee, Hyeong-Un (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Goh, San (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Lee, Im Been (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Nam, Sang-Sik (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Chung, Mi Nam (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Yu, Gyeong-Dan (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Hwang, Eom-Ji (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Lee, Seungyong (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Park, Jin Cheon (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Paul, Narayan Chandra (Bioenergy Crop Research Institute, National Institute of Crop Science) ;
  • Han, Seon-Kyeong (Bioenergy Crop Research Institute, National Institute of Crop Science)
  • 투고 : 2019.10.24
  • 심사 : 2019.11.16
  • 발행 : 2019.12.31

초록

최근 식용 위주에서 가공으로 용도가 다양화 되고 있어 괴근 수량 및 기능성 물질 등 괴근 품질 특성차이를 조사하여 용도별 고구마 품종 개발 및 가공 연구 등에 활용할 수 있는 기초자료를 얻고자 국내외에서 수집된 고구마 181유전자원을 공시하여 실험을 실시한 결과는 다음과 같다. 1. 만장은 최대 354.8 cm, 최소 32 cm, 평균길이는 112.3 cm였다. 분지수는 평균 3.1개였으나 IT232091가 특이적으로 23.0개로 가장 많았다. 마디수는 17.4에서 67.8개로 다양한 분포를 나타내었으며 평균 40.7개였다. 괴근수는 주당 30~50개 범위가 75자원로 가장 많았으며, 괴근 무게는 주당 0.5~1.0 kg 범위가 76자원으로 가장 많았다. 2. 전분의 호화개시온도는 IT232197가 가장 높았으며, IT232134가 가장 낮았다. 최고점도는 IT232050가 가장 높게 나타났으며, IT232176가 가장 낮았다. 강하점도는 IT232010가 가장 높게 나타났으며, IT232101이 가장 낮았다. 최저점도는 IT232019가 가장 낮게 나타났다. IT232101는 가장 높은 최종점도(284.6 RVU)를 나타냈다. 치반점도는 최대 81.7 RVU (IT232192)에서 최소 40.8 RVU(IT232101)의 범위로 나타났다. 전분의 안정성은 IT232101가 0.65로 가장 높았으며 IT232019가 0.20으로 가장 낮게 나타났다. 3. 총 폴리페놀 함량과 DPPH 라디칼 소거능이 높은 고구마를 각각 20자원씩 선발하였으며 그 중 IT232197을 포함하여 15자원이 중복된 자원임을 알게 되었다. 상관관계 분석 결과 폴리페놀함량이 높을수록 DPPH 라디칼소거능이 증가함을 알 수 있었다. 4. 당도 범위는 최대 33.3 °Bx에서 최소 13.5 °Bx로 나타났으며, 평균 23.2°Bx의 당도를 나타냈다. 전분 함량은 최대 20.7%에서 최소 5.2%로 나타났으며, 평균 11%의 전분 함량을 나타냈다. 수분함량은 70~80%범위가 52.5%, 60~70%의 수분함량이 44.2%의 빈도를 나타내었다.

This study was conducted to investigate the crop characteristics of 181 sweetpotato germplasms collected from Korea and overseas. The longest shoot vine length was observed in IT232211 (354.8 cm) and the shortest shoot vine length was observed in IT232185 (32 cm). The maximum numbers of shoot branches and nodes were produced by IT232091 (23.0) and IT232174 (67.8), respectively. Differences in Rapid Visco Analyser profiles were observed for pasting parameters such peak, trough, final, breakdown, and setback viscosities; and pasting temperature. The peak and breakdown viscosities were highest in IT232050 and IT232010, at 338.3 and 207.2 Rapid Visco Unit (RVU), respectively. The trough viscosity was lowest in IT232019 at 103.8 RVU. IT232101 had the highest final viscosity (284.6 RVU), and IT232192 had the highest setback viscosity (81.7 RVU). IT232197 had the highest pasting temperature at 86.8℃, and that of IT232134 was lowest at 72.7℃. To evaluate functional substance content, we analyzed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and total polyphenol content. The highest frequency proportion of starch was in the 10%-15% range (50.8% of the plants), followed by the 5%-10% range (38.1% of the germplasms). Sugar content ranged from 13.5 to 33.3% (23.2% on average); the highest frequency proportion of sugar was in the 20%-25% range (56.9% of the germplasms), followed by the 25%-30% range (25.4% of the germplasms). The highest frequency proportion of water was in the 70%-80% range (52.5% of the germplasms), followed by the 60%-70% range (44.2% of the germplasms). Our results provide basic data for the selection of useful resources and for the development of new sweetpotato varieties.

키워드

참고문헌

  1. Baek, M. H. and M. S. Shin. 1995. Effect of water activity on the physicochemical properties of sweet potato starch during storage. Korean J. Food Dci. Technol. 27(4) : 532-536.
  2. Bovell-Benjamin, A. C. 2007. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 52 : 1-59. https://doi.org/10.1016/S1043-4526(06)52001-7
  3. Blois, M. S. 1958. Antiocidant determination by the use of a stable free radical. Nature 26 : 1199-1200. https://doi.org/10.1038/1811199a0
  4. Choi, C. R., J. W. Rhim, and Y. K. Park. 2000. Physicochemical properties of purple-fleshed sweet potato starch. J. Korean Soc. Food Sci. Nutr. 29(1) : 1-5.
  5. Choi, J. H., J. S. Kim, B. S. Jo, J. H. Kim, H. J. Park, B. J. An, M. U. Kim, and Y. J. Cho. 2011. Biological activity in functional cosmetic of purple sweet potato extracts. Kor. J. Food Preservation. 18(3) : 414-422. https://doi.org/10.11002/kjfp.2011.18.3.414
  6. Collins, W. W. and W. M. Walter Jr. 1986. Fresh roots for human consumption. In sweetpotato products: A natural Resources for the Tropics. J. C. Bouwkamp (de.) CRC Press, Inc., Boca Ration, Florida. pp. 154-173.
  7. Dewanto, V., X. Wu, K. K. Adom, and R. H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidative activity. J. Agric. Food Chem. 50 : 3010-3015. https://doi.org/10.1021/jf0115589
  8. Lee, H.-U., J.-S, Lee, J.-W, Yang, S.-K. Han, S.-S. Nam, J.-M. Kim, S.-H. Ahn, M.-N. Chung, Y. S. Song, E.-J. Hwang, and K.-B. Lee. 2016. Effects of Transplanting and Harvesting Dates on Characteristics of Yield and Quality of Storage Roots of Sweetpotato (Ipomoea batatas (L.) Lam). J. Korean Soc. Int. Agric. 28(2): 205-214. https://doi.org/10.12719/KSIA.2016.28.2.205
  9. Han, S.-K., Y.-Sang Song, S.-H. Ahn, H.-U. Lee, J.-S. Lee, M.-N. Chung, and K.-G. Park. 2012. Difference of Growth and Root Characteristics of Sweetpotato by Cultivated Region. Korean J. Crop Sci. 57(3) : 262-270. https://doi.org/10.7740/kjcs.2012.57.3.262
  10. Han, S.-K., Y.-S. Song, H.-U. Lee, S.-H. Ahn, J.-W. Yang, J.-S. Lee, M.-N. Chung, S.-J. Suh, and K.-H. Park. 2013. Difference of Starch Characteristics of Sweetpotato (Ipomoea batatas (L.) Lam) by Cultivated Regions. Korean J. Food Sci. Technol. 45(6) : 682-692. https://doi.org/10.9721/KJFST.2013.45.6.682
  11. Katayama, K., K. Komaki, S. Tamiya, and K. Takayanagi. 1998. Varietaland Annual Variations in Pasting Properties of Sweet Potato Starch. Breeding Sci. 49 : 173-178. https://doi.org/10.1270/jsbbs.49.173
  12. Kim, S. R. and S. Y. Ahn. 1992. Physicochemical and structural properties of linerized starches from sweet potato. J. Korean Agric. Chem. Soc. 35 : 196-201.
  13. Lee, H.-U., J.-S. Lee, J.-W. Yang, S.-K. Han, S.-S. Nam, J.-M. Kim, S.-H. Ahn, M.-N. Chung, Y. S. Song, E.-J. Hwang, and K.-B. Lee. 2016. Effects of Transplanting and Harvesting Dates on Characteristics of Yield and Quality of Storage Roots of Sweetpotato (Ipomoea batatas (L.) Lam). J. Korean Soc. Int. Agric. 28(2) : 205-214. https://doi.org/10.12719/KSIA.2016.28.2.205
  14. Lee, J. H., Y. Son, B.-K. Lee, B. Lee, H.-J. Kim, J.-Y. Park, H. S. Lee, J. S. Kim, H.-H. Park, O.-K. Han, S. Y. Han, and Y. Lee. 2018. Analysis of total polyphenol content and antioxidant activity in puffed oats. Korean J. Food Sci. Technol. 50(1) : 117-121. https://doi.org/10.9721/KJFST.2018.50.1.117
  15. Lee, J. S., M. N. Chung, Y. S. Ahn, H. S. Kim, Y. S. Song, H. K. Shim, S. K. Han, J. M. Kim, S. J. Suh, J. J. Kim, K. H. Jeong, and J. S. Choi. 2013. A Sweet potato Cultivar 'Jeonmi' for Starch Processing. Kor. J. Breed. Sci. 45 : 440-444. https://doi.org/10.9787/KJBS.2013.45.4.440
  16. Lin, K. H., Y. C. Lai, K. Y. Chang, Y. F. Chen, S. Y. Hwang, and H.F. Lo. 2007. Improving breeding efficiency for quality and yield of sweet potato. Botanical Studies. 48 : 283-292.
  17. Lee, S. M. and G. S. Park. 2011. Quality characteristics of bread with various concentrations of purple sweetpotato. Kor. J. Food Cookery Sci. 27(4) : 1-16. https://doi.org/10.9724/kfcs.2011.27.4.001
  18. Middleton, E. and C. Kandaswami. 1997. Potential health-promoting properties of citrus flavonoids. Food Technol. 48 : 115-119.
  19. Oh, H. E. and J. S. Hong. 2008. Quality characteristics of sulgidduk added with fresh sweet potato. Korean J. Food Cookery Sci. 24 : 501-510.
  20. Park, J. Y., Y. S. Ahn, D. H. Shin, and S. T. Lim. 1999. Physicochemical Properties of Korean Sweet potato Starches. J. Korean Soc. Food Sci. Nutr. 28(1) : 1-8.
  21. Rural Development Administration. 2002. Proper method of fertilizer application. Suwon, Korea. p. 184.
  22. Rural Development Administration. 2009. Sweetpotato Cultivation. 1st ed. Hansung print, Suwon, Korea. p. 106-159.
  23. Shin, M. S. and S. Y. Ahn. 1983. Studies on physicochemical properties of starches from sweet potato of Korea cultivars. J. Korean Agric. Chem. Soc. 26 : 137-142.
  24. Shin, M. S. and S. Y. Ahn. 1987. Textural properties of dry and moist type sweetpotatoes. J Kor. Agric. Chem. Soc. 30(4) : 315-322.
  25. Yoon, S.-T., I.-H. Jeong, T.-K. Han, Y.-J. Kim, J.-B. Yu, G. Yang M.-H. Ye, S.-W. Baek, and K.-W. Kim 2016. Evaluation of Crop Characteristics of Sorghum (Sorghum bicolor L.) Germplasm for the Selection of Excellent Resources. Korean J. Plant Res. 29(4) : 479-494. https://doi.org/10.7732/kjpr.2016.29.4.479
  26. Yukihiro G., T. Shimizu, Y. Kato, M, Nakamura, T. Maitani, T. Yamada, N. Terahara, and M. Yamaguchi. 1997. Two acylated anthocyanins from purple sweetpotato. Phytochemistry. 44(1) : 183-186. https://doi.org/10.1016/S0031-9422(96)00533-X