References
- S. Adly and W. Oettli, Solvability of generalized nonlinear symmetric variational inequalities, The ANZIAM Journal. 40 (1999), 289-300.
- H. Brezis, Operateurs maximaux monotone, Mathematical Studies, vol. 5, North-Holland, Amsterdam (1973).
- J. Dong, D. Zhang, and A. Nagurney, A projected dynamical systems model of general financial equilibrium with stability analysis, Math. Comput. Model. 24 (1996), 35-44. https://doi.org/10.1016/0895-7177(96)00088-X
- P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res. 44 (1993), 7-42. https://doi.org/10.1007/BF02073589
- T. L. Friesz, D. Bernstein and R. Stough, Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Transportation Science. 30 (1996), 14-31. https://doi.org/10.1287/trsc.30.1.14
- A. Hamdi, A Moreau-Yosida regularization of a difference of two convex functions, Appl. Math. E-Notes. 5 (2005), 164-170.
- A. Hamdi, A modified bregman proximal scheme to minimize the difference of two convex functions, Appl. Math. E-Notes. 6 (2006), 132-140.
- A. A. Khan and M. Sama, Optimal control of multivalued quasi variational inequalities, Nonlinear Anal. 75 (2012), 1419-1428. https://doi.org/10.1016/j.na.2011.08.005
- A. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited (2006).
- Y. Li, Y. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag-leffler stability, Comput. Math. Appl. 59 (2010), 1810-1821. https://doi.org/10.1016/j.camwa.2009.08.019
- Q. Liu and J. Cao, A recurrent neural network based on projection operator for extended general variational inequalities, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 40 (2010), 928-938. https://doi.org/10.1109/TSMCB.2009.2033565
- Q. Liu and Y. Yang, Global exponential system of projection neural networks for system of generalized variational inequalities and related nonlinear minimax problems, Neurocomputing. 73 (2010), 2069-2076. https://doi.org/10.1016/j.neucom.2010.03.009
- A. Moudafi, On the difference of two maximal monotone operators: Regularization and algorithmic approaches, Appl. Math. Comput. 202 (2008), 446-452. https://doi.org/10.1016/j.amc.2008.01.024
- A. Moudafi, On critical points of the difference of two maximal monotone operators, Afrika Matematika. DOI 10.1007/s13370-013-0218-7 (2013), 1-7.
- A. Moudafi and M. A. Noor, Split algorithms for new implicit feasibility nullpoint problems, Appl. Math. Inf. Sci. 8 (2014), 2113-2118. https://doi.org/10.12785/amis/080504
- A. Nagurney and A. D. Zhang, Projected dynamical systems and variational inequalities with applications, Kluwer Academic, Boston (1996).
- M. A. Noor, Stability of the modified projected dynamical systems, Comput. Math. Appl. 44 (2002), 1-5. https://doi.org/10.1016/S0898-1221(02)00125-6
- M. A. Noor, Implicit resolvent dynamical systems for quasi variational inclusions, J. Math. Anal. Appl. 269 (2002), 216-226. https://doi.org/10.1016/S0022-247X(02)00014-8
- M. A. Noor, Resolvent dynamical systems for mixed variational inequalities, Korean J. Comput. Appl. Math. 9 (2002), 15-26. https://doi.org/10.1007/BF03012337
- M. A. Noor, A Wiener-Hopf dynamical system for variational inequalities, New Zealand J. Math. 31 (2002), 173-182.
- M. A. Noor, K. I. Noor, E. El-Shemas and A. Hamdi, Resolvent iterative methods for difference of two monotone operators, Inter. J. Optim.: Theory, Methods and Applications. 1 (2009), 15-25.
- M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone operators, Optim. Lett. 3 (2009), 329-335. https://doi.org/10.1007/s11590-008-0112-7
- M. A. Noor, K. I. Noor and R. Kamal, General variational inclusions involving difference of operators, J. Inequal. Appl. 2014:98 (2014), 16 pages.
- M. A. Noor, K. I. Noor, and A. G. Khan, Some iterative schemes for solving extended general quasi variational inequalities, Appl. Math. Inf. Sci. 7 (2013), 917-925. https://doi.org/10.12785/amis/070309
- M. A. Noor, K. I. Noor, and A. G. Khan, Three step algorithms for solving extended general variational inequalities, J. Adv. Math. Stud. 7 (2014), 38-49.
- M. A. Noor, K. I. Noor, and A. G. Khan, Dynamical systems for quasi variational inequalities, Ann. Funct. Anal. 6 (2015), 193-209. https://doi.org/10.15352/afa/06-1-14
- I. Petras, Fractional order nonlinear systems: Modeling, analysis and simulation, Higher Education Press (2011).
- I. Podlubny, Fractional differential equations, San Siego: Academic Press (1999).
- S. M. Robinson, Normal maps induced by linear transformations, Math. Oper. Res. 17 (1992), 691-714. https://doi.org/10.1287/moor.17.3.691
- P. Shi, Equivalence of variational inequalities with wiener-hopf equations, Proc. Amer. Math. Soc. 111 (1991), 339-346. https://doi.org/10.1090/S0002-9939-1991-1037224-3
- J. Slotine and W. Li, Applied nonlinear control, Prentice Hall, Englewood Cliffs, NJ (1991).
- G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, CRA Sciences. Paris. 258 (1964), 4413-4416.
- Y. Xia and J. Wang, On the stability of globally projected dynamical systems, J. Optim. Theory Appl. 106 (2000), 129-150. https://doi.org/10.1023/A:1004611224835
-
J. Yu, C. Hu and H. Jiang,
${\alpha}$ -stability and${\alpha}$ -synchronization for fractional-order neural networks, Neural Networks. 35 (2012), 82-87. https://doi.org/10.1016/j.neunet.2012.07.009 - W. Zeng-bao and Z. Yun-zhi, Global fractional-order projective dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2811-2819. https://doi.org/10.1016/j.cnsns.2014.01.007
- D. Zhang and A. Nagurney, On the stability of projected dynamical systems, J. Optim. Theory Appl. 85 (1995), 97-124. https://doi.org/10.1007/BF02192301