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Abstract

A false alarm, which is an incorrect report of an emergency, could trigger an unnecessary action. 

The predictive maintenance framework developed in our previous work has a feature whereby a 

machine alarm is triggered based on sensor data evaluation. The sensor data evaluator performs 

three essential evaluation steps. First, it evaluates each sensor data value based on its threshold 

(lower and upper bound) and labels the data value as “alarm” when the threshold is exceeded. 

Second, it calculates the duration of the occurrence of the alarm. Finally, in the third step, a domain 

expert is required to assess the results from the previous two steps and to determine, thereby, 

whether the alarm is true or false. There are drawbacks of the current evaluation method. It suffers 

from a high false-alarm ratio, and moreover, given the vast amount of sensor data to be assessed by 

the domain expert, the process of evaluation is prolonged and inefficient. In this paper, we propose a 

method for automatic false-alarm labeling that mimics how the domain expert determines false 

alarms. The domain expert determines false alarms by evaluating two critical factors, specifically the 

duration of alarm occurrence and identification of anomalies before or while the alarm occurs. In our 

proposed method, Hierarchical Temporal Memory (HTM) is utilized to detect anomalies. It is an 

unsupervised approach that is suitable to our main data characteristic, which is the lack of an 

example of the normal form of sensor data. The result shows that the technique is effective for 

automatic labeling of false alarms in sensor data.
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I. Introduction

According to ANSI/ISA-18.2 [1], an alarm system is a 

device combining hardware and software to detect an alarm 

state, communicate the indication of that state to operators, 

and record any change in it. Alarms are recognized as an 

effective tool for early detection of process upset [2] as 

well as identification of near misses followed by appropriate 

actions necessary to bring a process back to normal operation 

[3]. In short, an alarm system plays a vital role in ensuring 

operational safety and efficiency in most industrial sectors.

An alarm system also acts as a layer of protection preventing 

escalation of an abnormal event that otherwise could result 

in catastrophe [4]. The design of the protection layer(s) in 

an industry depends on its industrial process. Fig. 1 shows 

the different layers of protection associated with a typical 

industrial process. A properly functioning alarm system should 

provide relevant abnormality-related information to the 

operator to enable that person to perform the necessary 

intervention in avoiding catastrophic incidents.
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Many industrial incidents have been recorded as 

evidence of poor alarm system performance. For instance, 

during the investigation of the Milford Haven refinery 

explosion in 1997, the Health and SafetyExecutive (HSE) 

found that one of the major causes of the incident was 

the generation of too many alarms, or in other words, an 

alarm flood (275 alarms in 11 minutes), prior to the 

explosion [5] [6]. In another incident known as BP Texas 

City, the alarm system failed to warn the operator about 

an unsafe condition in the tower, which failure led to an 

explosion and fire leaving 15 dead 180 others injured.

Fig. 1. Layers of protection [4]

Such incidents imply that effective and robust alarm 

systems can improve the safety of working environments 

and that poor alarm systems reduce the ability of an 

operator to take necessary action in abnormal situations. 

Some of the significant symptoms associated with an 

ineffective alarm system are:

1. Inappropriate or no master alarm database;

2. No operator action required under an alarm condition

3. No clear guidelines or specifications for adding or 

deleting alarms;

4. Poor alarm testing procedures and records;

5. Operating procedures not written in consideration of 

alarms;

6. Changes in alarm settings during shift changeovers;

7. Important alarms being missed during accidents;

8. Minor upsets resulting in large numbers of alarms 

that operator cannot keep up with;

9. Alarms appearing for a considerable amount of time 

(even 24 hours) or alarms being activated even when 

there is no upset condition;

10. Too many high-priority alarms. 

If more than three of these symptoms are in evidence, 

action to improve the design of an alarm system is 

indispensable. Meanwhile, a past study identified five 

specific non-design-related alarm-system problems 

requiring attention and further investigation [7]. One of 

them is the handling of nuisance alarms. According to the 

ANSI/ISA-18.2 [1], the definition of a nuisance alarm is 

an alarm that annunciates excessively, unnecessarily, or 

does not return to normal after the correct response is 

taken. Nuisance alarms, also known as false alarms, 

require attention because they not only incur trouble 

during normal operation, but also are among the main 

factors contributing to excessive operator workload. 

Ineffective alarm management caused by false alarms can 

lead to severe loss. Hence, there is a critical need to 

develop a technique to deal with false alarms.

Fig. 2 shows the architecture of the cloud-based 

predictive maintenance system developed in our previous 

work [17]. The predictive maintenance system receives 

sensor data from a third-party application that collects it 

from machine(s) on the shop-floor within a manufacturing 

operation.

Fig. 2. Architecture of Cloud-based Predictive Maintenance [17]

The sensor data is stored in the database before 

undergoing processing by a particular module in the 

application layer. In alarm-system terms, the data 

processing module has two essential functions for 

evaluation of sensor data: evaluation of sensor data based 

on a threshold, and calculation of the duration of alarm 

occurrence for initial detection of a potential alarm. By 

relying only on this evaluation technique, however, our 

system suffers from unnecessary alarm overloading. 

Therefore, the result obtained from this data processing 

module still needs to be manually assessed by the domain 

expert to determine whether the alarm is false or true. 

Another problem now arises, this one related to 

false-alarm assessment. Simply, the vast amount of 
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sensor data to be assessed manually by the domain 

expert renders this task overly prolonged and inefficient. 

In our case study, the rule for determining a false alarm 

was known; hence, mimicking how the domain expert 

assessed the sensor data was possible. Proposing a 

method for automatic labeling of sensor data as a false 

alarm is the focus of this paper.

This paper is organized as follows. Section 2 discusses 

the related work, section 3 outlines the proposed method, 

and section 4 presents the system implementation and 

results. Finally, section 5 draws conclusions.

II. Preliminaries

2. Related works

2.1 False-alarm detection

There have been many studies related to false-alarm 

detection. [8] proposed a false-alarm detection 

architecture for cyber-physical systems designed for 

healthcare applications. It had been determined that 

utilization of a wide range of medical sensors generated a 

large number of false alarms that tended to confuse 

medical staff and reduce the efficiency of overall 

healthcare delivery. The implementation of the threshold 

alarm method as combined with multiple classifiers in the 

decision set effectively improves alarm performance in 

regard to both accuracy and efficiency. [9] attempts to 

reduce the false alarm ratio of installed Fire Detection 

and Fire Alarm Systems (FDAS) in Germany. Installed 

FDAS are useful means to achieve the objectives of fire 

protection engineering which are to increase the life 

safety and property protection. The highly sensitive 

sensor in fire detectors enables fire identification in an 

early stage, but this also makes FDAS susceptible to false 

alarms. The effectiveness of FDAS is critical to the 

firefighter operation, hence the understanding of false 

alarm to reduce its ratio is important. In the computer 

science field, research on the Intrusion Detection System 

(IDS) [10] applied a layered filtering approach to anomaly 

detection in order to reduce false-alarm rates. The idea 

behind the use of layered filtering is inspired by the 

process of air or water pollution elimination. Each filter 

layer is responsible for eliminating a specific pollution 

type. Similarly, each industry produces different 

characteristics of sensor data. By using the same concept, 

a layered filter could help to distinguish between normal 

and anomalous behavior of sensor data.

2.2 Anomaly detection

An anomaly is a state, condition or behavior that 

deviates from the norm. Anomaly detection refers to the 

identification of anomaly patterns in data. Anomaly 

detection is also known as outlier detection. Related 

applications ranging from military surveillance [11] to 

health care [12] have been widely studied. Generally, 

anomaly-detection strategies and algorithms can be 

grouped into two categories: statistical techniques and 

machine-learning methods. The principle of the statistical 

techniques is the creation of a statistical model derived 

from normal behavior data and its application to a 

statistical inference test to determine if a data instance fit 

the model or not.  The data is labeled as anomalous if the 

data instances have a low probability of being generated 

from the learned model. As for machine-learning 

methods, anomaly detection requires labeled data that 

denote instances as normal or anomalous. 

The sensor data utilized in our present case study was 

considered as time-series data, since its data points were 

indexed chronologically. It should be noted that there are 

some challenging factors that need to be considered when 

performing anomaly detection for time-series data [11]:

1. The pattern of the data keeps changing. Therefore, 

the anomaly-detection algorithm for time-series data 

should be able to learn continuously from the evolving 

data.

2. The data always contains temporal dependencies; 

thus, considering the temporal context in the 

anomaly-detection algorithm is important to the provision 

of more accurate prediction.

3. The anomaly-detection algorithm should perform 

robustly in eliminating the influence of noise.

In [13] and [14], it was concluded that neither 

statistical techniques nor machine learning can effectively 

handle the challenges thrown up by time-series data. 

Therefore, both studies proposed the use of Hierarchical 

Temporal Memory (HTM), which offers the ability to 

learn data patterns continuously without the need of 

significant manual intervention.
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Fig. 3. HTM Framework [13]

Fig. 3 provides a brief illustration of the HTM 

framework. The metric values are fed as input to the HTM. 

These values will be converted to a sparse distributed 

representation (SDR) before the learning process starts. 

SDRs give useful attributes such as generalizability across 

data stream types, strong resistance to noise, and the 

attachment of semantic meaning to data points [13]. In the 

next step, the HTM learning algorithm receives a 

sequence of SDRs as input. During the learning process, 

HTM performs patterns recognition in order to derive the 

associations between them. Every time a new pattern is 

learned, it will replace the old patterns as a form of 

continuous learning. HTM makes a prediction based on 

stored patterns. If a new data instance arrives, the scoring 

part compares the prediction with the input and outputs an 

anomaly score. This score is an evaluation of the degree 

of the derivation. 

As discussed in this paper, we combined the known 

rule that is used by the domain expert (explained in detail 

in section 3) and the anomaly-detection algorithm using 

HTM to effectively determine false alarms in our sensor 

data. Since we had no adequate sample of anomalous 

sensor data, we considered that the unsupervised type of 

HTM algorithm was suitable for our case study.

III. Proposed Method

3. Automatic false-alarm labeling framework

In this section, we discuss our proposed method for 

automatic false-alarm labeling and provide a detail 

explanation of the supporting module involved. 

Fig. 4 shows the framework of automatic false-alarm 

labeling. The framework consists of four essential modules: 

the data preprocessing module, the alarm occurrence duration 

filter, the anomaly detector, and false-alarm labeling. 

Basically, our proposed method adopts the layered filter 

concept mentioned in section 2. Each module involved in the 

automatic false-alarm labeling framework applies a specific 

rule for filtering of sensor data. As shown in Fig. 4, the first 

module, the data preprocessing module, filters the sensor 

data based on the threshold values (upper and lower bounds).

Fig. 4. Automatic false-alarm labeling framework

The second module filters the sensor data received 

from the first module based on the alarm occurrence 

duration (i.e. passing only sensor data with an alarm 

occurrence duration > 60 secs).

The third module, the anomaly detector, attempts to 

identify and distinguish between normal and anomalous 

patterns. The last module, false-alarm labeling, receives 

the results from the two previous modules. By application 

of particular rules that will be explained further in the 

next subsection, this module filters the sensor data and 

labels it as a false alarm if it meets the specific criteria.

3.1 Data preprocessing module

According to Fig. 2, the data preprocessing module 

processes raw sensor data that is stored in the database. 

Each sensor data has a different threshold value that is 

defined in advance by the domain expert to determine the 

state of the machine. There are two threshold values, 

namely the upper and lower bounds, which are used by 

the data preprocessing module to determine potential 

alarms. As mentioned in section 1, this module’s function 

is to evaluate the sensor data based on its threshold. 

When the threshold is exceeded, this module will log five 

crucial pieces of information including alarm cause, 

current sensor value, starting time of alarm occurrence, 

alarm duration, and status.

Fig. 5. Example of alarm detection logs
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Fig. 5 provides an example of alarm detection logs 

resulting from the data processing module. In the 

database, the label "alarm," as produced by the threshold 

evaluation process, refers to the "Neutral" label in the 

column status, as shown in Fig. 5; this label means that 

the current sensor data still has to be processed by 

another module, which, in this case, is the alarm 

occurrence duration filter.

3.2 Alarm occurrence duration filter

The purpose of the alarm occurrence duration filter is 

to find the cause of a false alarm. One of the causes of 

false alarms is chattering alarms, which can account for 

10 - 60% of alarm occurrences. Two other alarms closely 

related to false alarms are fleeting and repeating alarms. 

Fleeting alarms have a short-time alarm duration but do 

not immediately repeat [1]. Repeating alarms are alarms 

sounding and clearing repeatedly over a period of time 

[15]. The alarm occurrence duration filter module 

attempts to filter the sensor data received from the 

previous module, the data preprocessing module, by using 

a certain threshold value related to the duration of alarm 

occurrence (i.e. sensor data that has an alarm duration of 

less than 30 seconds will not be passed). This threshold 

value is defined by the domain expert. The 

straightforward rule applied by this module is intended to 

reduce the number of alarm occurrences that would be 

categorized as chattering alarms.

3.3 Anomaly detection using HTM

For our case study, the unsupervised type of 

anomaly-detection algorithm was chosen, since no adequate 

sample of anomalously labeled sensor data was available. 

The selection of HTM as the anomaly-detection algorithm 

was based on the consideration mentioned in section 2. HTM 

is a neuroscience-derived machine-learning algorithm that 

models spatial and temporal patterns in streaming data [13]. 

The model receives a continuous stream of inputs as 

follows:

…, xt-2, xt-1, xt, xt+1, xt+2, … (1).

HTM networks continuously learn in order to model the 

spatiotemporal characteristics of their input. HTM utilizes 

two different internal representations to perform anomaly 

detection. Given an input xt, the vector a(xt) is a sparse 

binary code representing the current input. State vector π

(xt) is utilized to represent a prediction for a(xt+1). The 

prediction vector incorporates inferred information about 

current sequences. In particular, a given input will lead to 

different predictions depending on both the current 

detected sequence and the current inferred position of the 

input within that sequence. How well the HTM models the 

current data stream will influence the quality of the 

prediction. a(xt) and π(xt) are recomputed at every 

iteration but do not directly represent anomalies.

Fig. 6. Primary functional steps in HTM algorithm [25]

There are two additional steps in HTM, as shown in 

Fig. 6: computation of a raw anomaly score from the two 

sparse vectors; computation of an anomaly likelihood 

value that is thresholded to determine whether the 

system is anomalous. These additional steps will be 

explained in the following subsection.

3.3.1 Raw anomaly score computation

Computation of the raw anomaly score enables 

measurement of the deviation between the model's 

predicted input and the actual input. It is computed based 

on the intersection of the predicted and actual sparse 

vectors. The raw anomaly score at time t (st), is given as:

       (2).

The raw anomaly score will be 0 if the current input is 

perfectly predicted, 1 if it is completely unpredicted, or 

somewhere in between depending on the similarity 

between the input and the prediction.

3.3.2 Anomaly likelihood computation

The raw anomaly score described above works well for 

predictable scenarios, but in many practical applications, 

inherent noise and unpredictable situations must be 

considered. In such situations, it is often a change in 

predictability that is indicative of anomalous behavior; thus, 

reliance only on direct thresholding of the raw anomaly 

score would lead to many false positives. To deal with these 

kinds of scenarios, rather than direct thresholding of the raw 

score to determine whether the current state is anomalous, 

it is suggested that the likelihood of anomaly be checked 

based on the model of the distribution of the anomaly score. 
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The anomaly likelihood is thus a metric defining how 

anomalous the current state is based on the prediction 

history of the HTM model. In the computation of anomaly 

likelihood, a window of the last W raw anomaly scores is 

maintained. The distribution is modeled as a rolling normal 

distribution wherein the sample mean and variance are 

continuously updated from previous anomaly scores as 

follows:

   (3).

   (4).

The subsequent process computes a recent short-term 

average of anomaly scores and applies a threshold to the 

Gaussian tail probability to determine whether or not to declare 

an anomaly. The Gaussian tail probability is the probability 

that a Gaussian variable will obtain a value larger than x 

standard deviations above the mean. The anomaly likelihood 

is defined as the complement of the tail probability:

   (5).

Where

   (6).

W’ is a window for a short-term moving average, 

where W’« W. Lt is thresholded and reported as an 

anomaly if it is very close to 1:

   (7).

In clean predictable scenarios, Lt behaves similarly to 

st. In these cases, the distribution of scores will have a 

very small variance and will be centered near 0. Any spike 

in st will similarly lead to a corresponding spike in Lt.

3.4 False-alarm labeling

The false-alarm labeling module evaluates the sensor 

data received from the alarm occurrence duration filter 

using a particular rule combined with the result from the 

anomaly-detection module. As shown in Table 1, the 

result from the anomaly detection contains information 

related to the detected anomalies such as the time of the 

anomaly occurrence, the metric value, the three different 

types of anomaly level, and the raw anomaly score. From 

these results, we consider only the detected anomalies of 

"high" or "medium" value.

Timestamp
Metric 

Value

Anomaly 

Level

Raw Anomaly 

Score

11/6/2017 8:08 3140.412 HIGH 0.586793832

11/6/2017 8:41 3360.438 HIGH 0.630290405

11/2/2017 16:50 4018.619 LOW 0.018347916

11/2/2017 16:51 4007.85 LOW 0.018347916

Table 1. Example of anomaly-detection result

There are several rules applied for labeling of false 

alarms:

1. All of the alarm occurrence overlaps with anomaly 

occurrences of "high" and/or "medium" level will be set 

as false alarms regardless of the duration of the alarm 

occurrence.

2. All of the alarm occurrences that only overlap with 

anomaly occurrences of "low" level will be set as true 

alarms regardless of the duration of the alarm occurrence.

In other words, if high- or medium-level anomalies are 

detected within the alarm occurrence period, the given 

alarm probably was triggered by the anomaly condition, 

and as such, will be considered to be a false alarm.

IV. Implementation and Results

In this section, we present the system environment, the 

implementation of the proposed method, and the results.

4.1 System environment

All of the modules for automatic false-alarm labeling 

were developed in the environment specified in detail in 

Table 2 and using PHP technology combined with the 

Codeigniter framework version 3.17. For anomaly detection, 

we used open-source HTM Studio, the source code for 

which can be found in the Numenta repository [28].

Development Environment

Web Server Apache Web Server 2.4

Database Maria DB 10.2

PHP Runtime 5.6.30

PHP Framework Codeigniter 3.1.7

Production Environment

Operating System Windows Server 2016 Datacenter

Web Server Apache Web Server 2.4

Database Maria DB 10.2

Table 2. System environment of automatic false-alarm labeling
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4.2 Implementation and results

We ran the application on a physical computer 

(specifications: Intel® Xeon® CPU E3-1220 V5 @ 

3.40GHz; 16GB RAM). The experiment was conducted 

using a real sensor dataset retrieved for the period 

2017-11-01 00:00:00 to 2017-11-07 23:59:59 (no. of 

instances: approx. 72,278).

The statistical information on the sensor data was as 

follows: min. value: 0; max. value: 4,150; average: 

948,29. The threshold values for this sensor data were 

2,094 and 1,047 as the upper and lower bounds, 

respectively. Based on the defined threshold values, the 

initial alarm detection performed by the data 

preprocessing module identified 69,890 (96,6%) of 72,278 

likely alarm conditions, meaning that this 96,6% was 

labeled as “Neutral” for processing by the next module 

and determination as a false or true alarm. The 

occurrence duration of the identified alarm had a range of 

value from 2 to 86,398 seconds. The alarm duration 

threshold in the alarm occurrence duration filter module 

was set to 60 seconds, which is to say that an alarm of 

duration less than or equal to 60 seconds would be set as 

a “false” alarm. After going through the filtration process 

in the alarm duration filter module, the number of 

detected alarms from the previous module was reduced 

from 69,890 to 68,511 (= 1,379 or 1,97%).

Timestamp Metric Value Anomaly Level

11/6/2017 8:08 HIGH 0.586793832

11/6/2017 8:41 HIGH 0.630290405

11/6/2017 8:50 HIGH 0.524650555

11/6/2017 10:55 HIGH 0.586793832

11/6/2017 12:55 HIGH 0.6083351

11/7/2017 6:16 HIGH 0.722230663

11/7/2017 7:58 HIGH 0.524650555

11/6/2017 8:40 MEDIUM 0.414057288

11/6/2017 8:51 MEDIUM 0.485281348

11/6/2017 8:53 MEDIUM 0.449933687

11/6/2017 8:55 MEDIUM 0.431789015

11/6/2017 10:53 MEDIUM 0.414057288

11/6/2017 12:41 MEDIUM 0.414057288

11/6/2017 12:53 MEDIUM 0.431789015

11/6/2017 12:56 MEDIUM 0.431789015

11/7/2017 6:15 MEDIUM 0.485281348

11/7/2017 6:26 MEDIUM 0.485281348

11/7/2017 8:13 MEDIUM 0.466211693

Table 3. Detailed information on detected anomalies

Fig. 7 shows the cut version of result of anomaly 

detection using the HTM algorithm. It detected 7 

anomalies and 11 likely anomalies of high and medium 

levels, respectively. The detailed information on the 

detected anomalies is shown in Table 3. As noted in 

section 3, Table 3 will be used by the false-alarm 

labeling module as a reference in determining false 

alarms. It will find and label an alarm as false if the 

sensor data matches the date shown in the timestamp 

column.

Fig. 7. Result of anomaly detection using HTM Algorithm

(cut version)

In the final result, there are 7,287 sensor data labeled 

as false alarms, which accounts for 10% of the total 

sensor data.

IV. Conclusions

Based on the experimental results, we can conclude 

that our proposed method can successfully detect false 

alarms and label sensor data. A low rate of successful 

labeling of sensor data as false alarms is influenced by 

many factors, such as lack of consideration of the state of 

the machine (e.g. start state, stable state, shutdown state, 

etc.) by the process of sensor data logging, the result 

being that the sensor values are too dispersed. In the 

perspective of effectiveness, the proposed method will 

increase the efficiency of sensor data labeling. Redefining 

of the threshold value in each module is believed to 

increase the effectiveness of the automatic labeling of 

false alarms. To increase the validity of the false-alarm 

assessment, the results obtained from the present 

experimentation still need to be validated by a domain 

expert. The results presented here are limited to offline 

sensor data labeling, and the characterization of the 

anomalous merely based on one sensor data, not multiple 

sensor data. However, this method is useful as a baseline 

for further development of an automatic false-alarm 

detection to increase the safety-operation in the industry.

Today, in the real industry emerge the need to detect 

the false-alarm in a real-time manner. Therefore, further 

development of streaming analytics to facilitate real-time 

false-alarm detection and labeling as well as 
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consideration of multi-sensor data for anomaly detection 

are two potential directions of future research.
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