
Journal of The Korea Society of Computer and Information

Vol. 24 No. 2, pp. 139-147, February 2019

www.ksci.re.kr

https://doi.org/10.9708/jksci.2019.24.02.139

Automatic False-Alarm Labeling for Sensor Data

1)Taufik Nur Adi*, Hyerim Bae**, Nur Ahmad Wahid***

Abstract

A false alarm, which is an incorrect report of an emergency, could trigger an unnecessary action.

The predictive maintenance framework developed in our previous work has a feature whereby a

machine alarm is triggered based on sensor data evaluation. The sensor data evaluator performs

three essential evaluation steps. First, it evaluates each sensor data value based on its threshold

(lower and upper bound) and labels the data value as “alarm” when the threshold is exceeded.

Second, it calculates the duration of the occurrence of the alarm. Finally, in the third step, a domain

expert is required to assess the results from the previous two steps and to determine, thereby,

whether the alarm is true or false. There are drawbacks of the current evaluation method. It suffers

from a high false-alarm ratio, and moreover, given the vast amount of sensor data to be assessed by

the domain expert, the process of evaluation is prolonged and inefficient. In this paper, we propose a

method for automatic false-alarm labeling that mimics how the domain expert determines false

alarms. The domain expert determines false alarms by evaluating two critical factors, specifically the

duration of alarm occurrence and identification of anomalies before or while the alarm occurs. In our

proposed method, Hierarchical Temporal Memory (HTM) is utilized to detect anomalies. It is an

unsupervised approach that is suitable to our main data characteristic, which is the lack of an

example of the normal form of sensor data. The result shows that the technique is effective for

automatic labeling of false alarms in sensor data.

▸Keyword: False-alarm detection, False-alarm labeling, anomaly detection, hierarchical temporal memory

I. Introduction

According to ANSI/ISA-18.2 [1], an alarm system is a

device combining hardware and software to detect an alarm

state, communicate the indication of that state to operators,

and record any change in it. Alarms are recognized as an

effective tool for early detection of process upset [2] as

well as identification of near misses followed by appropriate

actions necessary to bring a process back to normal operation

[3]. In short, an alarm system plays a vital role in ensuring

operational safety and efficiency in most industrial sectors.

An alarm system also acts as a layer of protection preventing

escalation of an abnormal event that otherwise could result

in catastrophe [4]. The design of the protection layer(s) in

an industry depends on its industrial process. Fig. 1 shows

the different layers of protection associated with a typical

industrial process. A properly functioning alarm system should

provide relevant abnormality-related information to the

operator to enable that person to perform the necessary

intervention in avoiding catastrophic incidents.

∙First Author: Taufik Nur Adi, Corresponding Author: Hyerim Bae

*Taufik Nur Adi (taufiknuradi@pusan.ac.kr), Industrial Engineering Department, Pusan National University

**Hyerim Bae (hrbae@pusan.ac.kr), Industrial Engineering Department, Pusan National University

***Nur Ahmad Wahid (nawa410@pusan.ac.kr), Big Data Department, Pusan National University

∙Received: 2019. 01. 28, Revised: 2019. 02. 19, Accepted: 2019. 02. 19.

∙This work was supported by a 2-Year Research Grant of Pusan National University

140 Journal of The Korea Society of Computer and Information

Many industrial incidents have been recorded as

evidence of poor alarm system performance. For instance,

during the investigation of the Milford Haven refinery

explosion in 1997, the Health and SafetyExecutive (HSE)

found that one of the major causes of the incident was

the generation of too many alarms, or in other words, an

alarm flood (275 alarms in 11 minutes), prior to the

explosion [5] [6]. In another incident known as BP Texas

City, the alarm system failed to warn the operator about

an unsafe condition in the tower, which failure led to an

explosion and fire leaving 15 dead 180 others injured.

Fig. 1. Layers of protection [4]

Such incidents imply that effective and robust alarm

systems can improve the safety of working environments

and that poor alarm systems reduce the ability of an

operator to take necessary action in abnormal situations.

Some of the significant symptoms associated with an

ineffective alarm system are:

1. Inappropriate or no master alarm database;

2. No operator action required under an alarm condition

3. No clear guidelines or specifications for adding or

deleting alarms;

4. Poor alarm testing procedures and records;

5. Operating procedures not written in consideration of

alarms;

6. Changes in alarm settings during shift changeovers;

7. Important alarms being missed during accidents;

8. Minor upsets resulting in large numbers of alarms

that operator cannot keep up with;

9. Alarms appearing for a considerable amount of time

(even 24 hours) or alarms being activated even when

there is no upset condition;

10. Too many high-priority alarms.

If more than three of these symptoms are in evidence,

action to improve the design of an alarm system is

indispensable. Meanwhile, a past study identified five

specific non-design-related alarm-system problems

requiring attention and further investigation [7]. One of

them is the handling of nuisance alarms. According to the

ANSI/ISA-18.2 [1], the definition of a nuisance alarm is

an alarm that annunciates excessively, unnecessarily, or

does not return to normal after the correct response is

taken. Nuisance alarms, also known as false alarms,

require attention because they not only incur trouble

during normal operation, but also are among the main

factors contributing to excessive operator workload.

Ineffective alarm management caused by false alarms can

lead to severe loss. Hence, there is a critical need to

develop a technique to deal with false alarms.

Fig. 2 shows the architecture of the cloud-based

predictive maintenance system developed in our previous

work [17]. The predictive maintenance system receives

sensor data from a third-party application that collects it

from machine(s) on the shop-floor within a manufacturing

operation.

Fig. 2. Architecture of Cloud-based Predictive Maintenance [17]

The sensor data is stored in the database before

undergoing processing by a particular module in the

application layer. In alarm-system terms, the data

processing module has two essential functions for

evaluation of sensor data: evaluation of sensor data based

on a threshold, and calculation of the duration of alarm

occurrence for initial detection of a potential alarm. By

relying only on this evaluation technique, however, our

system suffers from unnecessary alarm overloading.

Therefore, the result obtained from this data processing

module still needs to be manually assessed by the domain

expert to determine whether the alarm is false or true.

Another problem now arises, this one related to

false-alarm assessment. Simply, the vast amount of

Automatic False-Alarm Labeling for Sensor Data 141

sensor data to be assessed manually by the domain

expert renders this task overly prolonged and inefficient.

In our case study, the rule for determining a false alarm

was known; hence, mimicking how the domain expert

assessed the sensor data was possible. Proposing a

method for automatic labeling of sensor data as a false

alarm is the focus of this paper.

This paper is organized as follows. Section 2 discusses

the related work, section 3 outlines the proposed method,

and section 4 presents the system implementation and

results. Finally, section 5 draws conclusions.

II. Preliminaries

2. Related works

2.1 False-alarm detection

There have been many studies related to false-alarm

detection. [8] proposed a false-alarm detection

architecture for cyber-physical systems designed for

healthcare applications. It had been determined that

utilization of a wide range of medical sensors generated a

large number of false alarms that tended to confuse

medical staff and reduce the efficiency of overall

healthcare delivery. The implementation of the threshold

alarm method as combined with multiple classifiers in the

decision set effectively improves alarm performance in

regard to both accuracy and efficiency. [9] attempts to

reduce the false alarm ratio of installed Fire Detection

and Fire Alarm Systems (FDAS) in Germany. Installed

FDAS are useful means to achieve the objectives of fire

protection engineering which are to increase the life

safety and property protection. The highly sensitive

sensor in fire detectors enables fire identification in an

early stage, but this also makes FDAS susceptible to false

alarms. The effectiveness of FDAS is critical to the

firefighter operation, hence the understanding of false

alarm to reduce its ratio is important. In the computer

science field, research on the Intrusion Detection System

(IDS) [10] applied a layered filtering approach to anomaly

detection in order to reduce false-alarm rates. The idea

behind the use of layered filtering is inspired by the

process of air or water pollution elimination. Each filter

layer is responsible for eliminating a specific pollution

type. Similarly, each industry produces different

characteristics of sensor data. By using the same concept,

a layered filter could help to distinguish between normal

and anomalous behavior of sensor data.

2.2 Anomaly detection

An anomaly is a state, condition or behavior that

deviates from the norm. Anomaly detection refers to the

identification of anomaly patterns in data. Anomaly

detection is also known as outlier detection. Related

applications ranging from military surveillance [11] to

health care [12] have been widely studied. Generally,

anomaly-detection strategies and algorithms can be

grouped into two categories: statistical techniques and

machine-learning methods. The principle of the statistical

techniques is the creation of a statistical model derived

from normal behavior data and its application to a

statistical inference test to determine if a data instance fit

the model or not. The data is labeled as anomalous if the

data instances have a low probability of being generated

from the learned model. As for machine-learning

methods, anomaly detection requires labeled data that

denote instances as normal or anomalous.

The sensor data utilized in our present case study was

considered as time-series data, since its data points were

indexed chronologically. It should be noted that there are

some challenging factors that need to be considered when

performing anomaly detection for time-series data [11]:

1. The pattern of the data keeps changing. Therefore,

the anomaly-detection algorithm for time-series data

should be able to learn continuously from the evolving

data.

2. The data always contains temporal dependencies;

thus, considering the temporal context in the

anomaly-detection algorithm is important to the provision

of more accurate prediction.

3. The anomaly-detection algorithm should perform

robustly in eliminating the influence of noise.

In [13] and [14], it was concluded that neither

statistical techniques nor machine learning can effectively

handle the challenges thrown up by time-series data.

Therefore, both studies proposed the use of Hierarchical

Temporal Memory (HTM), which offers the ability to

learn data patterns continuously without the need of

significant manual intervention.

142 Journal of The Korea Society of Computer and Information

Fig. 3. HTM Framework [13]

Fig. 3 provides a brief illustration of the HTM

framework. The metric values are fed as input to the HTM.

These values will be converted to a sparse distributed

representation (SDR) before the learning process starts.

SDRs give useful attributes such as generalizability across

data stream types, strong resistance to noise, and the

attachment of semantic meaning to data points [13]. In the

next step, the HTM learning algorithm receives a

sequence of SDRs as input. During the learning process,

HTM performs patterns recognition in order to derive the

associations between them. Every time a new pattern is

learned, it will replace the old patterns as a form of

continuous learning. HTM makes a prediction based on

stored patterns. If a new data instance arrives, the scoring

part compares the prediction with the input and outputs an

anomaly score. This score is an evaluation of the degree

of the derivation.

As discussed in this paper, we combined the known

rule that is used by the domain expert (explained in detail

in section 3) and the anomaly-detection algorithm using

HTM to effectively determine false alarms in our sensor

data. Since we had no adequate sample of anomalous

sensor data, we considered that the unsupervised type of

HTM algorithm was suitable for our case study.

III. Proposed Method

3. Automatic false-alarm labeling framework

In this section, we discuss our proposed method for

automatic false-alarm labeling and provide a detail

explanation of the supporting module involved.

Fig. 4 shows the framework of automatic false-alarm

labeling. The framework consists of four essential modules:

the data preprocessing module, the alarm occurrence duration

filter, the anomaly detector, and false-alarm labeling.

Basically, our proposed method adopts the layered filter

concept mentioned in section 2. Each module involved in the

automatic false-alarm labeling framework applies a specific

rule for filtering of sensor data. As shown in Fig. 4, the first

module, the data preprocessing module, filters the sensor

data based on the threshold values (upper and lower bounds).

Fig. 4. Automatic false-alarm labeling framework

The second module filters the sensor data received

from the first module based on the alarm occurrence

duration (i.e. passing only sensor data with an alarm

occurrence duration > 60 secs).

The third module, the anomaly detector, attempts to

identify and distinguish between normal and anomalous

patterns. The last module, false-alarm labeling, receives

the results from the two previous modules. By application

of particular rules that will be explained further in the

next subsection, this module filters the sensor data and

labels it as a false alarm if it meets the specific criteria.

3.1 Data preprocessing module

According to Fig. 2, the data preprocessing module

processes raw sensor data that is stored in the database.

Each sensor data has a different threshold value that is

defined in advance by the domain expert to determine the

state of the machine. There are two threshold values,

namely the upper and lower bounds, which are used by

the data preprocessing module to determine potential

alarms. As mentioned in section 1, this module’s function

is to evaluate the sensor data based on its threshold.

When the threshold is exceeded, this module will log five

crucial pieces of information including alarm cause,

current sensor value, starting time of alarm occurrence,

alarm duration, and status.

Fig. 5. Example of alarm detection logs

Automatic False-Alarm Labeling for Sensor Data 143

Fig. 5 provides an example of alarm detection logs

resulting from the data processing module. In the

database, the label "alarm," as produced by the threshold

evaluation process, refers to the "Neutral" label in the

column status, as shown in Fig. 5; this label means that

the current sensor data still has to be processed by

another module, which, in this case, is the alarm

occurrence duration filter.

3.2 Alarm occurrence duration filter

The purpose of the alarm occurrence duration filter is

to find the cause of a false alarm. One of the causes of

false alarms is chattering alarms, which can account for

10 - 60% of alarm occurrences. Two other alarms closely

related to false alarms are fleeting and repeating alarms.

Fleeting alarms have a short-time alarm duration but do

not immediately repeat [1]. Repeating alarms are alarms

sounding and clearing repeatedly over a period of time

[15]. The alarm occurrence duration filter module

attempts to filter the sensor data received from the

previous module, the data preprocessing module, by using

a certain threshold value related to the duration of alarm

occurrence (i.e. sensor data that has an alarm duration of

less than 30 seconds will not be passed). This threshold

value is defined by the domain expert. The

straightforward rule applied by this module is intended to

reduce the number of alarm occurrences that would be

categorized as chattering alarms.

3.3 Anomaly detection using HTM

For our case study, the unsupervised type of

anomaly-detection algorithm was chosen, since no adequate

sample of anomalously labeled sensor data was available.

The selection of HTM as the anomaly-detection algorithm

was based on the consideration mentioned in section 2. HTM

is a neuroscience-derived machine-learning algorithm that

models spatial and temporal patterns in streaming data [13].

The model receives a continuous stream of inputs as

follows:

…, xt-2, xt-1, xt, xt+1, xt+2, … (1).

HTM networks continuously learn in order to model the

spatiotemporal characteristics of their input. HTM utilizes

two different internal representations to perform anomaly

detection. Given an input xt, the vector a(xt) is a sparse

binary code representing the current input. State vector π

(xt) is utilized to represent a prediction for a(xt+1). The

prediction vector incorporates inferred information about

current sequences. In particular, a given input will lead to

different predictions depending on both the current

detected sequence and the current inferred position of the

input within that sequence. How well the HTM models the

current data stream will influence the quality of the

prediction. a(xt) and π(xt) are recomputed at every

iteration but do not directly represent anomalies.

Fig. 6. Primary functional steps in HTM algorithm [25]

There are two additional steps in HTM, as shown in

Fig. 6: computation of a raw anomaly score from the two

sparse vectors; computation of an anomaly likelihood

value that is thresholded to determine whether the

system is anomalous. These additional steps will be

explained in the following subsection.

3.3.1 Raw anomaly score computation

Computation of the raw anomaly score enables

measurement of the deviation between the model's

predicted input and the actual input. It is computed based

on the intersection of the predicted and actual sparse

vectors. The raw anomaly score at time t (st), is given as:

 (2).

The raw anomaly score will be 0 if the current input is

perfectly predicted, 1 if it is completely unpredicted, or

somewhere in between depending on the similarity

between the input and the prediction.

3.3.2 Anomaly likelihood computation

The raw anomaly score described above works well for

predictable scenarios, but in many practical applications,

inherent noise and unpredictable situations must be

considered. In such situations, it is often a change in

predictability that is indicative of anomalous behavior; thus,

reliance only on direct thresholding of the raw anomaly

score would lead to many false positives. To deal with these

kinds of scenarios, rather than direct thresholding of the raw

score to determine whether the current state is anomalous,

it is suggested that the likelihood of anomaly be checked

based on the model of the distribution of the anomaly score.

144 Journal of The Korea Society of Computer and Information

The anomaly likelihood is thus a metric defining how

anomalous the current state is based on the prediction

history of the HTM model. In the computation of anomaly

likelihood, a window of the last W raw anomaly scores is

maintained. The distribution is modeled as a rolling normal

distribution wherein the sample mean and variance are

continuously updated from previous anomaly scores as

follows:

 (3).

 (4).

The subsequent process computes a recent short-term

average of anomaly scores and applies a threshold to the

Gaussian tail probability to determine whether or not to declare

an anomaly. The Gaussian tail probability is the probability

that a Gaussian variable will obtain a value larger than x

standard deviations above the mean. The anomaly likelihood

is defined as the complement of the tail probability:

 (5).

Where

 (6).

W’ is a window for a short-term moving average,

where W’« W. Lt is thresholded and reported as an

anomaly if it is very close to 1:

 (7).

In clean predictable scenarios, Lt behaves similarly to

st. In these cases, the distribution of scores will have a

very small variance and will be centered near 0. Any spike

in st will similarly lead to a corresponding spike in Lt.

3.4 False-alarm labeling

The false-alarm labeling module evaluates the sensor

data received from the alarm occurrence duration filter

using a particular rule combined with the result from the

anomaly-detection module. As shown in Table 1, the

result from the anomaly detection contains information

related to the detected anomalies such as the time of the

anomaly occurrence, the metric value, the three different

types of anomaly level, and the raw anomaly score. From

these results, we consider only the detected anomalies of

"high" or "medium" value.

Timestamp
Metric

Value

Anomaly

Level

Raw Anomaly

Score

11/6/2017 8:08 3140.412 HIGH 0.586793832

11/6/2017 8:41 3360.438 HIGH 0.630290405

11/2/2017 16:50 4018.619 LOW 0.018347916

11/2/2017 16:51 4007.85 LOW 0.018347916

Table 1. Example of anomaly-detection result

There are several rules applied for labeling of false

alarms:

1. All of the alarm occurrence overlaps with anomaly

occurrences of "high" and/or "medium" level will be set

as false alarms regardless of the duration of the alarm

occurrence.

2. All of the alarm occurrences that only overlap with

anomaly occurrences of "low" level will be set as true

alarms regardless of the duration of the alarm occurrence.

In other words, if high- or medium-level anomalies are

detected within the alarm occurrence period, the given

alarm probably was triggered by the anomaly condition,

and as such, will be considered to be a false alarm.

IV. Implementation and Results

In this section, we present the system environment, the

implementation of the proposed method, and the results.

4.1 System environment

All of the modules for automatic false-alarm labeling

were developed in the environment specified in detail in

Table 2 and using PHP technology combined with the

Codeigniter framework version 3.17. For anomaly detection,

we used open-source HTM Studio, the source code for

which can be found in the Numenta repository [28].

Development Environment

Web Server Apache Web Server 2.4

Database Maria DB 10.2

PHP Runtime 5.6.30

PHP Framework Codeigniter 3.1.7

Production Environment

Operating System Windows Server 2016 Datacenter

Web Server Apache Web Server 2.4

Database Maria DB 10.2

Table 2. System environment of automatic false-alarm labeling

Automatic False-Alarm Labeling for Sensor Data 145

4.2 Implementation and results

We ran the application on a physical computer

(specifications: Intel® Xeon® CPU E3-1220 V5 @

3.40GHz; 16GB RAM). The experiment was conducted

using a real sensor dataset retrieved for the period

2017-11-01 00:00:00 to 2017-11-07 23:59:59 (no. of

instances: approx. 72,278).

The statistical information on the sensor data was as

follows: min. value: 0; max. value: 4,150; average:

948,29. The threshold values for this sensor data were

2,094 and 1,047 as the upper and lower bounds,

respectively. Based on the defined threshold values, the

initial alarm detection performed by the data

preprocessing module identified 69,890 (96,6%) of 72,278

likely alarm conditions, meaning that this 96,6% was

labeled as “Neutral” for processing by the next module

and determination as a false or true alarm. The

occurrence duration of the identified alarm had a range of

value from 2 to 86,398 seconds. The alarm duration

threshold in the alarm occurrence duration filter module

was set to 60 seconds, which is to say that an alarm of

duration less than or equal to 60 seconds would be set as

a “false” alarm. After going through the filtration process

in the alarm duration filter module, the number of

detected alarms from the previous module was reduced

from 69,890 to 68,511 (= 1,379 or 1,97%).

Timestamp Metric Value Anomaly Level

11/6/2017 8:08 HIGH 0.586793832

11/6/2017 8:41 HIGH 0.630290405

11/6/2017 8:50 HIGH 0.524650555

11/6/2017 10:55 HIGH 0.586793832

11/6/2017 12:55 HIGH 0.6083351

11/7/2017 6:16 HIGH 0.722230663

11/7/2017 7:58 HIGH 0.524650555

11/6/2017 8:40 MEDIUM 0.414057288

11/6/2017 8:51 MEDIUM 0.485281348

11/6/2017 8:53 MEDIUM 0.449933687

11/6/2017 8:55 MEDIUM 0.431789015

11/6/2017 10:53 MEDIUM 0.414057288

11/6/2017 12:41 MEDIUM 0.414057288

11/6/2017 12:53 MEDIUM 0.431789015

11/6/2017 12:56 MEDIUM 0.431789015

11/7/2017 6:15 MEDIUM 0.485281348

11/7/2017 6:26 MEDIUM 0.485281348

11/7/2017 8:13 MEDIUM 0.466211693

Table 3. Detailed information on detected anomalies

Fig. 7 shows the cut version of result of anomaly

detection using the HTM algorithm. It detected 7

anomalies and 11 likely anomalies of high and medium

levels, respectively. The detailed information on the

detected anomalies is shown in Table 3. As noted in

section 3, Table 3 will be used by the false-alarm

labeling module as a reference in determining false

alarms. It will find and label an alarm as false if the

sensor data matches the date shown in the timestamp

column.

Fig. 7. Result of anomaly detection using HTM Algorithm

(cut version)

In the final result, there are 7,287 sensor data labeled

as false alarms, which accounts for 10% of the total

sensor data.

IV. Conclusions

Based on the experimental results, we can conclude

that our proposed method can successfully detect false

alarms and label sensor data. A low rate of successful

labeling of sensor data as false alarms is influenced by

many factors, such as lack of consideration of the state of

the machine (e.g. start state, stable state, shutdown state,

etc.) by the process of sensor data logging, the result

being that the sensor values are too dispersed. In the

perspective of effectiveness, the proposed method will

increase the efficiency of sensor data labeling. Redefining

of the threshold value in each module is believed to

increase the effectiveness of the automatic labeling of

false alarms. To increase the validity of the false-alarm

assessment, the results obtained from the present

experimentation still need to be validated by a domain

expert. The results presented here are limited to offline

sensor data labeling, and the characterization of the

anomalous merely based on one sensor data, not multiple

sensor data. However, this method is useful as a baseline

for further development of an automatic false-alarm

detection to increase the safety-operation in the industry.

Today, in the real industry emerge the need to detect

the false-alarm in a real-time manner. Therefore, further

development of streaming analytics to facilitate real-time

false-alarm detection and labeling as well as

146 Journal of The Korea Society of Computer and Information

consideration of multi-sensor data for anomaly detection

are two potential directions of future research.

REFERENCES

[1] ISA, ANSI/ISA-18.2: Management of Alarm Systems for

the Process Industries. International Society of

Automation. Durham, NC, USA, 2009.

[2] Nochur, A., Vedam, H., & Koene, J., Alarm performance

metrics. Singapore Honeywell Singapore. 2001.

[3] Jain, P., Pasman, H. J., Waldram, S. P., Rogers, W.

J., & Mannan, M. S., Did we learn about risk control since

Seveso? Yes, we surely did, but is it enough? An historical

brief and problem analysis. Journal of Loss Prevention

in the Process Industries. 2016.

[4] Stauffer, T., Sands, N., & Dunn, D., Get a Life (cycle)!

Connecting Alarm Management and Safety Instrumented

Systems. Paper presented at the ISA Safety & Security

Symposium. 2010b.

[5] Srinivasan, R., Liu, J., Lim, K., Tan, K., & Ho, W., Intelligent

alarm management in a petroleum refinery. Hydrocarbon

Processing, 83(11), 47-54. 2004.

[6] EEMUA. 191-Alarm Systems: A Guide to Design,

Management and Procurement Edition 3. 2013.

[7] Pariyani, A., Seider, W. D., Oktem, U. G., & Soroush,

M., Incidents Investigation and Dynamic Analysis of Large

Alarm Databases in Chemical Plants: A

Fluidized-Catalytic-Cracking Unit Case Study†.

Industrial & Engineering Chemistry Research, 49(17),

8062-8079. 2010.

[8] S. Haque and S. Aziz, "False Alarm Detection in

Cyber-physical Systems for Healthcare Applications",

AASRI Procedia, vol. 5, pp. 54-61, 2013.

[9] S. Festag, "False alarm ratio of fire detection and fire

alarm systems in Germany – A meta analysis", Fire Safety

Journal, vol. 79, pp. 119-126, 2016.

[10] R. Pokrywka, "Reducing False Alarm Rate in Anomaly

Detection with Layered Filtering", Computational Science

– ICCS 2008, pp. 396-404, 2008.

[11] A. Patcha, J.M. Park, An overview of anomaly detection

techniques: Existing solutions and latest technological

trends, Comput. Netw. 51 (12) (2007) 3448–3470.

[12] J. Lin, E. Keogh, A. Fu, H.V. Herle, Approximations

to magic: finding unusual medical time series, in: 18th

IEEE Symposium on Computer-Based Medical Systems

(CBMS’05), IEEE, 2005.

[13] J. Wu, W. Zeng and F. Yan, "Hierarchical Temporal

Memory method for time-series-based anomaly

detection", 2018.

[14] S. Ahmad, A. Lavin, S. Purdy and Z. Agha, "Unsupervised

real-time anomaly detection for streaming data",

Neurocomputing, vol. 262, pp. 134-147, 2017.

[15] D. Rothenberg, Alarm Management for Process Control.

New York: Momentum Press, 2011.

[16] J. Wang, F. Yang, T. Chen and S. Shah, "An Overview

of Industrial Alarm Systems: Main Causes for Alarm

Overloading, Research Status, and Open Problems", IEEE

Transactions on Automation Science and Engineering,

vol. 13, no. 2, pp. 1045-1061, 2016. Available:

10.1109/tase.2015.2464234.

[17] T. Adi et al., "Cloud-Based Predictive Maintenance

Framework for Sensor Data Analytics", ICIC Express

Letters, Part B: Applications, vol. 9, no. 11, p. 1161, 2018.

[18] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection:

a survey, ACM Comput.Surv. (CSUR) 41 (3) (2009) 15.

[19] V. Hodge, J. Austin, A survey of outlier detection

methodologies, Artif. Intell. Rev. 22 (2) (2004) 85–126.

[20] J. Hawkins, S. Ahmad, Why neurons have thousands

of synapses, a theory of sequence memory in neocortex,

Front. Neural Circ. 10 (2016).

[21] J. Hawkins, "Hierarchical Temporal Memory White

Paper", Numenta, 2011.

[22] Jenkins, S., Guidelines for Engineering Design for

Process Safety. Chemical Engineering,119(9), 9-10,

2012.

[23] Stauffer, T., & Clarke, P. Using alarms as a layer of

protection. Process Safety Progress. 2015.

[24] Nochur, A., Vedam, H., & Koene, J., Alarm performance

metrics. Singapore Honeywell Singapore. 2001.

[25] P. Goel, A. Datta and M. Mannan, "Industrial alarm

systems: Challenges and opportunities", Journal of Loss

Prevention in the Process Industries, vol. 50, pp. 23-36,

2017.

[26] S. Ahmad and S. Purdy, "Real-Time Anomaly Detection

for Streaming Analytics", arXiv:1607.02480, 2016.

[27] Cui, Yuwei, Surpur, Chetan, Ahmad, Subutai, and

Hawkins, Jeff. Continuous online sequence learning with

an unsupervised neural network model. pp.

arXiv:1512.05463 [cs.NE], 2015.

[28] Numenta GitHub repository. [Online]. Available:

https://github.com/numenta/numenta-apps/tree/master

/unicorn.

Automatic False-Alarm Labeling for Sensor Data 147

Authors

Taufik Nur Adi received the B.S degree in

Computer Science from Sepuluh Nopember

Institute of Technology, Indonesia in 2007.

He received the M.S degree in Computer

Science Bandung Institute of Technology,

Indonesia, in 2012. He is interested in

machine learning and reinforcement learning.

Hyerim Bae received Ph.D. degree in

Industrial Engineering from Seoul National

University, South Korea in 2002. He is

currently a full professor of Business

Process Management in the Department of

Industrial Engineering, Pusan National

University, Busan, South Korea. His research interests

include business process management, business

intelligence, software development, information

technology, cloud computing, and logistics.

Nur Ahmad Wahid received the B.S degree

in Computer Science from Sepuluh

Nopember Institute of Technology,

Indonesia in 2014. He is currently enrolled

as a research student in Business Service

Computing Laboratory Department of

Industrial Engineering, Pusan National University, Busan,

South Korea. His research interests include Machine

Learning, Process Mining, and Business Process

Simulation.

