DOI QR코드

DOI QR Code

A Polymer-based Capacitive Air Flow Sensor with a Readout IC and a Temperature Sensor

  • Kim, Wonhyo (Smart Sensor Research Center, Korea Electronics Technology Institute) ;
  • Lee, Hyugman (Smart Sensor Research Center, Korea Electronics Technology Institute) ;
  • Lee, Kook-Nyeong (Smart Sensor Research Center, Korea Electronics Technology Institute) ;
  • Kim, Kunnyun (Smart Sensor Research Center, Korea Electronics Technology Institute)
  • Received : 2018.10.30
  • Accepted : 2019.01.30
  • Published : 2019.01.31

Abstract

This paper presents an air flow sensor (AFS) based on a polymer thin film. This AFS primarily consists of a polymer membrane attached to a metal-patterned glass substrate and a temperature-sensing element composed of NiCr. These two components were integrated on a single glass substrate. The AFS measures changes in capacitance caused by deformation of the polymer membrane based on the air flow and simultaneously detects the temperature of the surrounding environment. A readout integrated circuit (ROIC) was also fabricated for signal processing, and an ROIC chip, 1.8 mm by 1.9 mm in size, was packaged with an AFS in the form of a system-in-package module. The total size of the AFS is 1 by 1 cm, and the diameter and thickness of the circular-shaped polymer membrane are 4 mm and $15{\mu}m$, respectively. The rate of change of the capacitance is approximately 11.2% for air flows ranging between 0 and 40 m/s.

Keywords

HSSHBT_2019_v28n1_1_f0001.png 이미지

Fig. 1. Schematic diagram of the structure’s capacitance

HSSHBT_2019_v28n1_1_f0002.png 이미지

Fig. 2. Schematic of the AFS with temperature sensor.

HSSHBT_2019_v28n1_1_f0003.png 이미지

Fig. 3. Fabrication process for the bottom electrode structure of the AFS

HSSHBT_2019_v28n1_1_f0004.png 이미지

Fig. 4. Images of the AFS fabrication process. (a) Polymer membrane as the top electrode, (b) patterned glass substrate as the bottom electrode and the assembled AFS.

HSSHBT_2019_v28n1_1_f0005.png 이미지

Fig. 5. Capacitance measured by the AFS due to air-flow changes in a wind channel.

HSSHBT_2019_v28n1_1_f0006.png 이미지

Fig. 6. Temperature characteristics of the AFS with a temperature sensor.

HSSHBT_2019_v28n1_1_f0007.png 이미지

Fig. 1. Simplified block diagram of the proposed ROIC for the AFS.

HSSHBT_2019_v28n1_1_f0008.png 이미지

Fig. 2. Operation of the airflow counting logic based on the airflow rate.

HSSHBT_2019_v28n1_1_f0009.png 이미지

Fig. 9. Photograph of the ROIC chip and SiP module with the AFS. (a) Chip layout (left) and fabricated ROIC (right), (b) SiP module with the AFS.

HSSHBT_2019_v28n1_1_f0010.png 이미지

Fig. 10. The air flow measurement system, including the control board and LCD monitor.

References

  1. L. Gu, Q. A. Huang, and M. Qin, "A novel capacitve-type humidity sensor using CMOS fabrication technology", Sens. Actuators B, Vol. 99, pp. 491-498, 2004. https://doi.org/10.1016/j.snb.2003.12.060
  2. U. Kang and K.D. Wise, "A high-speed capacitive humidity sensor with on-chip thermal reset", IEEE Trans. Electron. Devices, Vol. 47, pp. 702-710, 2000. https://doi.org/10.1109/16.830983
  3. J. Laconte, V. Wilmart, J. P. Raskin, and D. Flandre, "Capacitive humidity sensor using a polyimide sensing film", DTIP MEMS MOEMS, pp. 223-228, Cannes Mandelieu, France, 2003.
  4. C. Dai, "A capacitive humidity sensor integrated with micro heater and ringoscillator circuit fabricated by CMOS-MEMS technique",Sens. Actuators B, pp. 1-6, 2006.
  5. S. Park, S. Kim, and Y. Kim, "A flow direction sensor fabricated using MEMS technology and its simple interface circuit", Sens. Actuators B, Vol. 91, pp. 347-352, 2003. https://doi.org/10.1016/S0925-4005(03)00109-6
  6. J. E. Sundeen and R. C. Buchanan, "Thermal sensor properties of cermet resistor films on silicon substrates", Sens. Actuators B, Vol. 90, No. xx, pp. 118-124, 2001. https://doi.org/10.1016/S0924-4247(00)00562-8
  7. A. Talic, S. Cerimovic, R. Beigelbeck, F. Kohl, A. Jachimowicz, and F. Keplinger, "Novel Thermal Flow Sensors Based on a Wheatstone Bridge Read-out", Procedia Chem., Vol. 1, pp. 136-19, 2009. https://doi.org/10.1016/j.proche.2009.07.034
  8. A. Helwig, J. Spannhake, G. Muller, N. Rosman, and T. Pagnier, "Temperature characterization of silicon substrates for gas sensors by Raman spectroscopy", Sens. Actuators B, Vol. 126, pp. 240-244, 2007. https://doi.org/10.1016/j.snb.2006.12.002
  9. P. Bruschi, A. Ciomei, and M. Piotto, "Design and analysis of integrated flow sensors by means of a two-dimensional finite element model", Sens. Actuators B, Vol. 142, No. xx, pp. 153-159, 2008. https://doi.org/10.1016/j.sna.2007.05.019
  10. M. Kimura, F. Sakurai, H. Ohta, and T. Terada, "Proposal of a new structural thermal vacuum sensor with diode-thermistors combined with a micro-air-bridge heater", Microelectronics J., Vol. 38, pp. 171-176, 2007. https://doi.org/10.1016/j.mejo.2006.09.018
  11. N. T. Nguyen, "A novel thermal sensor concept for flow direction and flow velocity", IEEE Sens. J., Vol. 5, pp. 1224-1234, 2005. https://doi.org/10.1109/JSEN.2005.858924
  12. Y. H. Wang, C. Y. Lee, and C. M. Chiang, "A MEMS-based Air Flow Sensor with a Free-standing Microcantilever", Sensors, Vol. 7, pp. 2389-2401, 2007. https://doi.org/10.3390/s7102389
  13. R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg "A micromachined pressurerflow-sensor", Sens. Actuators B, Vol. 77, pp. 167-177, 1999. https://doi.org/10.1016/S0924-4247(99)00188-0
  14. Z. W. Wei, M. Qin, Q. A. Huang, "A Novel 2-D Capacitive Silicon Flow Sensor," IEEE SENSORS Conference. 2007
  15. C. M. Bruinink, R. K. Jaganatharaja, M. J. de Boer, E. Berenschot, M. L. Kolster, T. S. J. Lammerink, R. J. Wiegerink, and G. J. M. Krijnen, "Advancements in Technokogy and design of biometic flow sensor arrays," Micro Electro Mechanical Systems, IEEE 22nd International Conference. 2009.
  16. S. Satyanarayana, D. T. McCormick, and A. Majumdar, "Parylene micro membrane capacitive sensor array for chemical and biological sensing", Sens. Actuators B, Vol. 115, pp. 494-502, 2006. https://doi.org/10.1016/j.snb.2005.10.013