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THE RICCI CURVATURE ON DIRECTED GRAPHS

Taiki Yamada

Abstract. In this paper, we consider the Ricci curvature of a directed

graph, based on Lin-Lu-Yau’s definition. We give some properties of the

Ricci curvature, including conditions for a directed regular graph to be
Ricci-flat. Moreover, we calculate the Ricci curvature of the cartesian

product of directed graphs.

1. Introduction

The Ricci curvature is one of the most important concepts in Riemannian
geometry. In space physics, Ricci-flat manifolds represent vacuum solutions to
an analogue of Einstein’s equation for Riemannian manifolds with vanishing
cosmological constant. They are used in the theory of general relativity. In
mathematics, Calabi-Yau manifolds are Ricci-flat and can be applied to the
superstring theory. There are some definitions of generalized Ricci curvature,
one of which is Olivier’s coarse Ricci curvature (see [5], [6]). It is formulated
by the 1-Wasserstein distance on a metric space (X, d) with a random walk
m = {mx}x∈X , where mx is a probability measure on X. The coarse Ricci
curvature is defined as, for two distinct points x, y ∈ X,

κ(x, y) := 1−
W (mx,my)

d(x, y)
,

where W (mx,my) is the 1-Wasserstein distance between mx and my.
On the other hand, the graph theory is used to model many types of relations

and processes in physical, biological, social and information systems (see [9],
[10] and [11]). A graph G = (V,E) is a pair of the set V of vertices and the
set E of edges. If each edge is represented as an ordered pair of vertices, G is
called a directed graph.

In 2010, Lin-Lu-Yau [2] defined the Ricci curvature of an undirected graph
by using the coarse Ricci curvature of the lazy random walk, and they studied
the Ricci curvature of the product space of graphs and random graphs. They
also considered the Ricci-flat graph and classified undirected Ricci-flat graphs
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114 T. YAMADA

with girth at least five (see [3]). In 2012, Jost and Liu [1] studied the relation
between the Ricci curvature and the local clustering efficient. Recently, the
Ricci curvature on graphs was applied to cancer network [7], internet topology
[4] and so on. Sometimes it seems important to consider directed graphs as
networks. However, curvatures on directed graphs have not yet been discussed
well because it is much more difficult than the undirected case.

In this paper, we define the Ricci curvature of a directed graph based on
Lin-Lu-Yau’s definition, and state basic properties (§2). For some examples,
we calculate the Ricci curvature explicitly (§3). Then giving lower and upper
bounds, we obtain conditions for a directed regular graph to be Ricci-flat (The-
orem 4.4). Finally, we generalize it to the cartesian product graph (Theorem
4.9).

Acknowledgment. The author thanks his supervisors, Prof. Reiko Miyaoka
and Prof. Takashi Shioya, for their continuous support and providing impor-
tant comments. He also thanks the referee for his/her valuable comments and
suggestions.

2. Definition of Ricci curvature on directed graphs

Throughout the paper, we always assume that a graph G = (V,E) is di-
rected. If not, it will be clearly stated. For x, y ∈ V , we write (x, y) as an edge
from x to y. We denote the set of vertices of G by V (G) and the set of edges
of G by E(G).

Definition 2.1. (1) A directed path from x ∈ V (G) to vertex y ∈ V (G) is

a sequence of edges
{

(ai, ai+1)

}n−1

i=0
, where a0 = x, an = y. We call n

the length of the path.
(2) The distance d(x, y) between two vertices x, y ∈ V is given by the

length of a shortest directed path from x to y.

Remark 2.2. If G is strongly connected (i.e., there exists a directed path from
x to y for any x, y ∈ V ), then the distance is finite. The distance function
satisfies positivity and triangle inequality, but not necessarily the symmetry.

Definition 2.3. (1) For any x ∈ V , the out-neighborhood of x is defined
as

Γout(x) := {y ∈ V | (x, y) ∈ E} .
(2) For any x ∈ V , the out-degree of x, denoted by dout

x , is the number of
edges starting from x, i.e., dout

x = |Γout(x)|.
(3) We call G d-regular graph if every vertex has the same out-degree d.

In this paper, we assume that a directed graph G has the following proper-
ties.

(1) Locally finiteness (every vertex has a finite degree).
(2) Simpleness (there exist no loops and no multi-edges).
(3) Strongly connectedness.
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Definition 2.4. For any x ∈ V (G) and any α ∈ [0, 1], we define a probability
measure mα

x on V (G) by

mα
x(v) =


α, if v = x,

1− α
dout
x

, if (x, v) ∈ E,

0, otherwise.

Definition 2.5. For two probability measures µ and ν on V (G), the 1-Wasser-
stein distance between µ and ν is given by

W (µ, ν) = inf
A

∑
u,v∈V

A(u, v)d(u, v),

where A : V (G)× V (G)→ [0, 1] runs over all maps satisfying{∑
v∈V A(u, v) = µ(u),∑
u∈V A(u, v) = ν(v).

(2.1)

Such a map A is called a coupling between µ and ν.

Remark 2.6. To take the infimum of couplings in the definition of W , we
should check that the set of couplings is not empty. If we take two probability
measures mα

x and mα
y for x, y ∈ V (G), then there always exists at least one

coupling between two probability measures. In fact, we define the coupling Ā
between mα

x and mα
y by

Ā(u, v) =


α, if u = x, v = y,

mα
x(u)

dout
y

, if u ∈ Γout(x), v ∈ Γout(y),

0, otherwise.

It is easy to show that Ā satisfies (2.1).

Remark 2.7. A coupling A that attains the Wasserstein distance, does not
necessarily exist since the distance is not symmetry. If it exists, we call it the
optimal coupling.

Definition 2.8. For any two distinct vertices x, y ∈ V , the α-Ricci curvature
of x and y is defined as

κα(x, y) = 1−
W (mα

x ,m
α
y )

d(x, y)
.

Remark 2.9 ([2]). For any two vertices x and y, κα(x, y) is concave in α ∈ [0, 1].

Proposition 2.10. For any two vertices x and y, we have

W (mα
x ,m

α
y ) ≥ sup

f

(∑
u∈V

f(u)mα
x(u)−

∑
v∈V

f(v)mα
y (v)

)
,(2.2)

where f : V (G)→ R runs over all functions with f(u)− f(v) ≤ d(u, v).
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Proof. For any coupling A between mα
x and mα

y , we have∑
u,v∈V

A(u, v)d(u, v) ≥
∑
u,v∈V

A(u, v)(f(u)− f(v))

=
∑
u∈V

f(u)
∑
v∈V

A(u, v)−
∑
v∈V

f(v)
∑
u∈V

A(u, v)

=
∑
u∈V

f(u)mα
x(u)−

∑
v∈V

f(v)mα
y (v).

Since the left-hand side is independent of f , and so is the right-hand side of A,
the proof is completed. �

If there exists a function satisfied the equality of (2.2), then we call it the
optimal function.

Remark 2.11. Proposition 2.10 holds for f running over all the 1-Lipshitz func-
tions. In the case of undirected graphs, the equality holds in Proposition 2.10,
and we call the proposition the Kantorovich-Rubinstein duality [8].

We would like to obtain the upper bound of κα/(1 − α). In [2], this is
obtained by using the symmetry of the 1-Wasserstein distance. However, in
the case of directed graphs, the distance is not symmetry in general, so we use
another approach. For any two distinct vertices x, y, we decompose Γout(y)
into the following sets according to their distance from x:

Γkx(y) =
{
v ∈ Γout(y) | d(x, v) = d(x, y)− k

}
,

where −1 ≤ k ≤ d(x, y), since 0 ≤ d(x, v) = d(x, y) − k ≤ d(x, y) + d(y, v) =
d(x, y) + 1.

Proposition 2.12. For any two distinct vertices x, y, we have

κα(x, y) ≤ 1− α
d(x, y)

1 +
1

dout
y

d(x,y)∑
k=−1

k|Γkx(y)|

 .(2.3)

Proof. For a fixed x ∈ V , define f(z) := −d(x, z) for z ∈ V . Then it follows
that

f(z)− f(w) = −d(x, z) + d(x,w)

≤ d(z, w).

By Proposition 2.10, we have

W (mα
x ,m

α
y ) ≥

∑
z∈V

d(x, z)(mα
y (z)−mα

x(z))

= αd(x, y) +

d(x,y)∑
k=−1

(d(x, y)− k)|Γkx(y)|1− α
dout
y

− (1− α)
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= αd(x, y) + d(x, y)(1− α)−
1− α
dout
y

d(x,y)∑
k=−1

k|Γkx(y)| − (1− α)

= d(x, y)−
1− α
dout
y

d(x,y)∑
k=−1

k|Γkx(y)| − (1− α).

The proof is completed. �

Corollary 2.13. If any edge (x, y) satisfies (y, x) /∈ E and

Γout(x) ∩ Γout(y) = ∅,

then we have

κα(x, y) ≤ 0.

Proof. If we take any edge (x, y), then we have

κα(x, y) ≤ 1 +
|Γ1
x(y)| − |Γ−1

x (y)|
dout
y

,

by Proposition 2.12. The first assumption implies |Γ1
x(y)| = 0, and the second

implies |Γ0
x(y)| = 0. So, the out-degree of y is equal to |Γ−1

x (y)|. Thus, we
obtain

κα(x, y) ≤ 0. �

Remark 2.14. Remark 2.9 implies that h(α) := κα(x, y)/(1−α) is a monotone
increasing function in α ∈ [0, 1) (the detail is written in the proof of Lemma
2.1 in [2]). Proposition 2.12 implies that h(α) is bounded. Thus, the limit
κ(x, y) = limα→1 κα(x, y)/(1− α) exists.

Definition 2.15. For any two distinct vertices x, y ∈ V , the Ricci curvature
of x and y is defined as

κ(x, y) = lim
α→1

κα(x, y)

1− α
.

Whenever we are interested in the lower bound of Ricci curvature, the fol-
lowing lemma implies that it is sufficient to consider the Ricci curvature of the
edge, although the Ricci curvature is defined for any pair of vertices.

Proposition 2.16. If κ(u, v) ≥ κ0 for any edge (u, v) ∈ E(G), then κ(x, y) ≥
κ0 for any pair of vertices (x, y).

The proof is similar to the case of undirected graphs [2] and is omitted. If
κ(x, y) = r ∈ R holds for all edges (x, y) ∈ E, then we say that G is a graph
of constant Ricci curvature, and write κ(G) = r. If κ(G) = 0, we say G is
Ricci-flat.

Remark 2.17. On a Ricci-flat graph, κ(x, y) = 0 does not necessarily hold for
any vertices x, y unless (x, y) ∈ E. Example 3.3 below is one of such examples.
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3. Examples

In this section, we calculate the Ricci curvature on some directed graphs.

Definition 3.1. For a finite graph G, let M = (mij) be the matrix defined by
the following:

mij =

{
1, if (vi, vj) ∈ E,
0, if (vi, vj) 6∈ E,

where V (G) = {v1, v2, . . . , vn}. We call M the adjacency matrix of the graph
G. Note that the adjacency matrix is not necessarily symmetric.

Example 3.2 (Complete graph K2n+1). We consider a directed complete
graph with the following adjacency matrix M2n+1:

m1,j = 1, j∈{2, . . . , n+ 1} ,
m1,j = 0, j∈{1} ∪ {n+ 2, . . . , 2n+ 1} ,
mi,j = 1, i∈{2, . . . , n+ 1} , j∈{1 + i, . . . , n+ i} ,
mi,j = 0, i∈{2, . . . , n+ 1} , j 6∈{1 + i, . . . , n+ i} ,
mi,j = 1, i∈{n+ 2, . . . , 2n} , j∈{1 + i, . . . , 2n+ 1} ∪ {1, . . . , i− n− 1} ,
mi,j = 0, i∈{n+ 2, . . . , 2n} , j 6∈{1 + i, . . . , 2n+ 1} ∪ {1, . . . , i− n− 1} ,
m2n+1,j = 1, j∈{1, . . . , n} ,
m2n+1,j = 0, j∈{n+ 1, . . . , 2n+ 1} .

For instance, M3, M5, M7 are given by

M3 =

 0 1 0
0 0 1
1 0 0

 , M5 =


0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0

 ,

M7 =



0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0


.

By the definition of M2n+1, for j ∈ {2, . . . , n}, we have

Γout(v1) ∩ Γout(vj) = {vj+1, . . . , vn+1}

and Γout(v1) ∩ Γout(vn+1) = ∅. For simplicity, we take the vertex v1, and
calculate the Ricci curvature on the edges from v1. For j ∈ {2, . . . , n+ 1} and
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k ∈ {1, . . . , j − 1}, we define a coupling Aj between mα
v1 and mα

vj by

Aj(u, v) =



α, if u = v1, v = vj ,

1− α
n

, if u = v ∈ Γout(v1) ∩ Γout(vj),

1− α
n

, if u = v1+k, v = vn+1+k,

0, otherwise,

and define a function fj : Γout(v1)→ Γout(vj) by

fj(u) =


1, if u = v1,

−1, if u ∈ Γout(vj) \ Γout(v1),

0, otherwise.

By using these coupling and function, for any edge (x, y) ∈ E(K2n+1), the
value is either one of the following.

κ(x, y) ∈

{
0,

1

n
, . . . ,

n− 1

n

}
.

Example 3.3 (Cycle Cn). We consider a directed cycle as follows. Let

V (Cn) = {x1, x2, . . . , xn} .

For any i ∈ {1, 2, . . . , n− 1}, let (xi, xi+1) ∈ E(Cn) and (xn, x1) ∈ E(Cn).
This cycle is called a directed cycle. Then this is Ricci-flat, namely,

κ(Cn) = 0.

However, in the middle of Figure 1, κ(x1, x5) = 5/4, and is not zero.

Example 3.4 (Tree T ). In general, a tree has no strongly connected direction.
However, if we consider the directed tree with dout

v = 1 for any v ∈ V (T ), we
can calculate the Ricci curvature on any edges. The Ricci curvature is given
by

κ(T ) = 0.

Example 3.5 (Ladder graph). We consider an infinite graphG, called a Ladder
graph, that is directed as follows.

Let V (G) = {x1, x2, . . . , xn, xn+1, . . .} and

E(G) = {(x1, x2), (x4, x3), (x6, x5), . . .} ∪ {(x3, x1), (x5, x3), . . .}
∪ {(x2, x4), (x4, x6), . . .} .

Then, the Ricci curvature is given by

κ(u, v) ≤ 0 for any (u, v) ∈ E(G).
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Figure 1. Complete graph K5, directed cycle C5, and regular
tree T3

Figure 2. Ladder graph

4. Properties of Ricci curvature on a directed graph

In this section, we prove some properties of the Ricci curvature.

4.1. Conditions to be Ricci-flat graph

Proposition 4.1. For any edge (x, y) ∈ E(G), we have

κ(x, y) ≥ (1−D)

(
1−

1

dout
x

)
,

where D := maxu∈Γout(x),v∈Γout(y) d(u, v).

Proof. We take any edge (x, y), and calculate Ricci curvature of x and y by the
coupling between mα

x and mα
y . Our transfer plan moving mα

x to mα
y should be

as follows:

(1) Move the mass of α from x to y. The distance is 1.
(2) Move the mass of 1−α

dout
x

from y to Γout(y). The distance is 1.

(3) Fill gaps using the mass at Γout(x) \ {y}.
The distance is at most D := maxu∈Γout(x),v∈Γout(y) d(u, v).
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By this transfer plan, calculating the 1-Wasserstein distance between mα
x and

mα
y , we have

W (mα
x ,m

α
y ) ≤ α+

1− α
dout
x

+
D(1− α)

dout
x

(dout
x − 1)

= α+D(1− α) +
(1−D)(1− α)

dout
x

.

Then we obtain

κα(x, y) ≥ (1− α)(1−D)−
(1−D)(1− α)

dout
x

,

which implies

κ(x, y) ≥ (1−D)

(
1−

1

dout
x

)
.

�

By using Proposition 2.12 and Proposition 4.1, we obtain the following:

Corollary 4.2. For an edge (x, y) ∈ E, we assume that dout
x = 1 and (y, x) /∈

E. Then we have

κ(x, y) = 0.

Proposition 4.3. If there exists a bijective map φ : Γout(x) → Γout(y) with
d(u, φ(u)) = 1 for any edge (x, y) and u ∈ Γout(x), then we have

κ(x, y) ≥ 0.

Proof. We take any edge (x, y), and assume that |Γout(x)| = d. By the as-
sumption, G is a d-regular graph. We define a coupling A0 between mα

x and
mα
y by

A0(u, v) =


α, if u = x, v = y,

1− α
d

, if u ∈ Γout(x), v = φ(u),

0, otherwise.

By using this coupling, calculating the 1-Wasserstein distance between mα
x and

mα
y , we have

W (mα
x ,m

α
y ) ≤ α+

d∑
i=1

1− α
d

= α+ (1− α) = 1.

Thus we obtain

κ(x, y) ≥ 0. �

Combining Corollary 2.13 and Proposition 4.3, we obtain the following:

Theorem 4.4. Assume that any edge (x, y) satisfies the following conditions:
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(1) (y, x) /∈ E, and Γout(x) ∩ Γout(y) = ∅.
(2) There exists a bijective map φ : Γout(x)→ Γout(y) with d(u, φ(u)) = 1

for any u ∈ Γout(x).

Then G is Ricci-flat.

Remark 4.5. We cannot replace “any” by “some” in the condition (1) of The-
orem 4.4. In fact, under the condition (2), we have examples with (y, x) ∈ E
for some edge, but not all edges (Figure 3(a)), and also, Γout(x) ∩ Γout(y) = ∅
for some (x, y), but not all (x, y) (Figure 3(b)). In fact, the Ricci curvature of
(x0, z) in Figure 3(b) is 1/2, not zero. On the other hand, the graph in Figure
3(a) is Ricci-flat, so there exists a Ricci-flat graph that does not satisfy the
conditions of Theorem 4.4.

Remark 4.6. Both conditions of Theorem 4.4 are needed. In fact, the graph
in Figure 3(c) satisfies (1),but the distance from z ∈ Γout(x0) to any vertex in
Γout(y0) is 2. So there do not exist bijective maps satisfying (2). On the other
hand, the complete graph K2n+1 (Example 3.2) satisfies only the condition (2).

Figure 3. Example of Remark 4.5
and Remark 4.6

4.2. Cartesian product graph

Definition 4.7. For two directed graphs G = (V (G), E(G)) and H = (V (H),
E(H)), the cartesian product graph of G and H, denoted by G × H, is a
directed graph over the vertex set V (G × H) = V (G) × V (H), and (x1, y1),
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(x2, y2) ∈ V (G×H) are connected if

x1 = x2 and (y1, y2) ∈ E(H),

or
(x1, x2) ∈ E(G) and y1 = y2.

Remark 4.8. If G is a dG-regular graph and H is a dH -regular graph, then
G×H is a (dG + dH)-regular graph.

For any graph G, the Ricci curvature on G is denoted by κG. When we cal-
culate the Ricci curvature on the cartesian product graph, we need to consider
an optimal coupling and an optimal function. The details of the calculation
are written in Theorem 3.1 in [2].

Theorem 4.9. Assume that G satisfies the conditions of Theorem 4.4. Then
for any dH-regular graph H, we have

κG×H((x1, y), (x2, y)) = 0

for (x1, x2) ∈ E(G) and y ∈ V (H).

Proof. We take any edge ((x1, y), (x2, y)) ∈ E(G ×H), and give the coupling
between mα

(x1,y) and mα
(x2,y). Since G satisfies the conditions of Theorem 4.4,

by Proposition 2.13, there exists the optimal function f(z) = −d(x1, z) for
z ∈ V (G), and by Proposition 4.3, G is a dG-regular graph and the optimal
coupling A0 is given in the proof of Proposition 4.3, i.e.,

1 =
∑
z∈V

d(x1, z)(m
α
x2

(z)−mα
x1

(z)) ≤W (mα
x1
,mα

x2
) ≤

∑
u,v∈V

A0(u, v)d(u, v) = 1.

By using this coupling A0, a map B : V (G×H)×V (G×H)→ [0, 1] is defined
by

B((u1, v1), (u2, v2))

=



dGA0(x1, x2)

dG + dH
+

αdH

dG + dH
, if u1 = x1, u2 = x2, v1 = v2 = y,

dGA0(u1, u2)

dG + dH
, if u1 ∈ Γout(x1), u2 = φ(u1), v1 = v2 = y,

dHm
α
y (v)

dG + dH
, if u1 = x1, u2 = x2, v1 = v2 = v ∈ Γout(y),

0, otherwise,

that is,

B((u1, v1), (u2, v2)) =



α, if u1 = x1, u2 = x2, v1 = v2 = y,

1− α
dG + dH

, if u1 ∈ Γout(x1), u2 = φ(u1), v1 = v2 = y,

1− α
dG + dH

, if u1 = x1, u2 = x2, v1 = v2 = v ∈ Γout(y),

0, otherwise.
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It is easy to check that this map is a coupling between mα
(x1,y) and mα

(x2,y). So,

the 1-Wasserstein distance satisfies

W (mα
(x1,y),m

α
(x2,y)) ≤

dG

dG + dH
W (mα

x1
,mα

x2
) +

dH

dG + dH
.

Then we have

κG×Hα ((x1, y), (x2, y)) ≥
dG

dG + dH
κGα (x1, x2).

Thus, we obtain

κG×H((x1, y), (x2, y)) ≥
dG

dG + dH
κG(x1, x2).(4.1)

On the other hand, by using the optimal function, we define a function F :
V (G×H)× V (G×H)→ R by

F (u, v) =



f(u), if v = y,

f(x1) + f(x2) + 1

2
, if u = x1, v 6= y,

f(x1) + f(x2)− 1

2
, if u = x2, v 6= y,

0, otherwise,

that is,

F (u, v) =


−d(x1, u), if v = y,

−1, if u = x2, v 6= y,

0, otherwise.

It is easy to check that F satisfies F (u1, v1)− F (u2, v2) ≤ d((u1, v1), (u2, v2)).
By Proposition 2.10, the 1-Wasserstein distance satisfies

W (mα
(x1,y),m

α
(x2,y)) ≥

dG + αdH

dG + dH
W (mα′

x1
,mα′

x2
) + (1− α)

dH

dG + dH
,

where α′ = α(dG + dH)/(dG + αdH). Then we have

κG×Hα ((x1, y), (x2, y)) ≤
dG + αdH

dG + dH
κGα′(x1, x2).

Since (1− α′)/(1− α) = dG/(dG + αdH), we obtain

κG×H((x1, y), (x2, y)) = lim
α→1

1

1− α
κG×Hα ((x1, y), (x2, y))

≤
dG

dG + dH
κG(x1, x2).(4.2)

By (4.1) and (4.2), we have

κG×H((x1, y), (x2, y)) =
dG

dG + dH
κG(x1, x2).
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Since G is Ricci-flat by Theorem 4.4, the proof is completed. �

Corollary 4.10. Assume that H satisfies the conditions of Theorem 4.4. Then
for any dG-regular graph G, we have

κG×H((x, y1), (x, y2)) = 0

for x ∈ V (G) and (y1, y2) ∈ E(H).

Combining Theorem 4.9 and Corollary 4.10, we obtain the following:

Corollary 4.11. Assume that both G and H satisfy the conditions of Theorem
4.4. Then G×H is Ricci-flat.
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